
M A S T E R T H E S I S

Security Evaluation and Vulnerability
Assessment of FlatBuffers

An Analysis of the inherent vulnerabilities and risks associated with
the FlatBuffers encoding format

MIN Faculty
Department of Informatics

at Research Group Computer Networks (NET)

Lilly Sell

li@lly.sh or bav3001@studium.uni-hamburg.de
M.Sc. Informatik
Student ID Number: 7047081

First Reviewer: Prof. Dr.-Ing. Mathias Fischer
Second Reviewer: Prof. Dr. Janick Edinger
Supervisor: August See

mailto:li@lly.sh
mailto:bav3001@studium.uni-hamburg.de

Abstract
FlatBuffers are a popular encoding format in distributed systems
of which rely on performance and lightweight encoding/decoding
of messages. This is achieved by FlatBuffers through encoding
rules that closely match the execution and memory model of the
underlying hardware, however, a component as central as a com-
munications protocol must actively incorporate security mecha-
nisms in its design too to prevent the whole system from collaps-
ing. To the contrary, the FlatBuffers project facilitates insecure
coding practices caused by the underlying format constituting a
number of attack vectors which may lead to a systems degrada-
tion and even full collapse. While protocol security is a well-estab-
lished area of research, the FlatBuffers format has not thoroughly
been investigated. This work investigates different attack vectors
permitted by the format and systematically compares their im-
pact on applications using FlatBuffers in different programming
languages and configurations. It is shown that while FlatBuffers
is an efficient protocol, it should be used with care and exper-
tise. Additionally, guidelines for improving FlatBuffers safety are

included.

Acknowledgements
Many thanks to all my friends and family who supported me through these stressful
months. I especially want to mention Benedikt Ostendorf for his valuable insights

and without whom this whole would have never been started.
Also, I acknowledge that ChatGPT has been used for drafts.

Contents
1 Introduction .. 1

2 Background ... 4
2.1 Schemafull Communication ... 4
2.2 Code Generation ... 5
2.3 Memory Layout of Data Structures .. 6
2.4 FlatBuffers Workflow .. 7

3 Scope and Related Work ... 10
3.1 Related Work .. 10

3.1.1 Protocol Extraction and Reverse Engineering .. 10
3.1.2 Denial of Service Vectors and Attacks .. 13
3.1.3 Input-Validation and Language-Security .. 14
3.1.4 FlatBuffers Security .. 14
3.1.5 Dependable API Design .. 15
3.1.6 Summary .. 16

3.2 Research Questions ... 16

4 FlatBuffers Protocol Analysis .. 18
4.1 FlatBuffers Encoding Rules ... 18

4.1.1 Scalar Primitives ... 19
4.1.2 Structs .. 19
4.1.3 Tables ... 19
4.1.4 Variable-Length Vectors ... 20
4.1.5 Strings .. 20
4.1.6 Enums ... 20
4.1.7 Unions .. 20
4.1.8 Offsets ... 21
4.1.9 Other Encoding Considerations .. 21

4.2 Reverse Engineering Considerations .. 21
4.3 Attack Vectors against the FlatBuffers format ... 24

4.3.1 Format Violations ... 24
4.3.2 DAG-Explosion Attack ... 24
4.3.3 Data Overlap Attack .. 26

5 Practical Security Evaluation .. 27
5.1 Real-World Vulnerable Schemas .. 27

5.1.1 GitHub Schema Crawling ... 27
5.1.2 Automated Schema Analysis .. 28
5.1.3 Results .. 28

5.2 FlatBuffers Language Implementation Comparison .. 30
5.2.1 Language Comparison Environment ... 30
5.2.2 Attack Impact Measurement .. 35

5.2.3 Language Comparison Results .. 37
5.3 DAG-Explosion DoS impact .. 47

5.3.1 Memory Impact of Tree-Walk ... 47
5.3.2 CPU Impact of Tree-Walk .. 51
5.3.3 Memory Impact of Linearization .. 54

6 Discussion .. 57
6.1 Vulnerabilities ... 57
6.2 Improvement Suggestions .. 60

7 Limitations and Future Work .. 62

8 Conclusion ... 63

Glossary .. I

Bibliography .. II

List of Figures
Figure 1: A binary value which can be interpreted as different data types 1
Listing 1: An example C struct whose fields have different alignment requirements . 7
Listing 2: An example FlatBuffers schema that defines a Person type. 8
Listing 3: Example using generated code to encode a Person object 9
Listing 4: Example using generated code to decode a Person object 9
Figure 2: A distributed system using FlatBuffers being attacked 18
Figure 3: Example encoding of a table with tow fields .. 20
Figure 4: Example encoding of a vector with 3 elements ... 20
Listing 5: Pseudocode of the reverse-engineering algorithm 22
Figure 5: Schematic input and output of the reverse-engineering algorithm 23
Listing 6: A sample FlatBuffers schema that is vulnerable to DAG-Explosions 25
Figure 6: Schematic representation of a DAG-Explosion payload using Listing 6 . . . 25
Listing 7: An example FlatBuffers schema with a possible data overlap encoding . . 26
Table 1: The schema of the folklore database .. 27
Listing 8: The search-expression used to filter for public schema files 28
Listing 9: An example data path descriptor vulnerable to DAG-Explosions 28
Listing 10: Verifier construction in Apache Arrow ... 30
Listing 11: The vulnerable schema that was used for this evaluation 31
Listing 12: The algorithm-under-test for evaluation purposes 31
Listing 13: Comparison of a valid and invalid FlatBuffers string encoding 32
Listing 14: Annotated FlatBuffers message with InvalidStringLength 33
Listing 15: Annotated FlatBuffers message with InvalidVecLength 33
Listing 16: Annotated FlatBuffers message with InvalidForwardOffset 34
Listing 17: Annotated FlatBuffers with InvalidBackwardOffset 34
Listing 18: Annotated FlatBuffers message with InvalidRootOffset 34
Listing 19: Annotated FlatBuffers message with AttributeOverlap 35
Listing 20: Invocation of run_instrumented.py with output 37
Listing 21: How to interpret a buffer as Monster object ... 38
Listing 22: An insecure way of constructing the FlatBuffers validator 39
Listing 23: Definition of the default validator options ... 39
Listing 24: Logging of a string without UTF-8 escaping .. 40
Listing 25: The signatures of the C# validator options constructors 41
Listing 26: Default implementation for the VerifierOptions 44
Listing 27: Example error stack of the Rust validation error 44
Figure 7: Graph of the TypeScript servers CPU time for impossibly large vector . . 46
Table 2: Comparison of the language evaluation results .. 47
Figure 8: Memory used by different servers when encountering a DAG-Explosion .. 50
Figure 9: Maximum amount of memory ever used, limited by garbage collection ... 51
Figure 10: CPU-time/real-time comparison for tree-walking a DAG-Explosion 53
Table 3: CPU utilization efficiency during long running operations 53
Figure 11: Resource usage when a DAG-Explosion is converted to JSON 56
Table 4: Possibly exhibited behavior by different language implementations 60

1 Introduction
In the contemporary digital landscape, computers and devices are interconnected
through vast and intricate networks, enabling numerous applications and services to
interoperate seamlessly. The efficiency and security of data communication in such
networks are paramount, and protocols for data serialization play a critical role in
this context. An encoding format determines how a piece of information is translated
into a set of bytes as well as how a set of bytes is translated back into usable informa-
tion. Figure 1 presents a binary value whose information cannot be extracted without
any additional context. Depending on the used encoding, the value can have different
meanings and it is precisely the encoding format that dictates which interpretation is
the correct one.

Figure 1: A binary value which among others can be interpreted either as the string
“cafe”, one 64bit integer, or four 8-bit integers

Many different encoding formats have been developed, each with their own design
choices, resulting in very different strengths and weaknesses. For example, in web ap-
plications, JavaScript Object Notation (JSON) enjoys great popularity for its simplic-
ity and great support built into all web browsers. In other contexts, with different
requirements and use-cases, different formats are used instead. One such format is
FlatBuffers[1]. It is a serialization protocol developed by Google, that is designed to
provide efficient encoding and chiefly decoding of arbitrary data with minimal overhead.
FlatBuffers achieves this through explicit encoding rules that are as close as possible to
the requirements of most general-purpose hardware and by utilizing predefined schemas
that specify the structure of the data being transmitted. If that structure is known
in advance, it does not need to be included in encoded values, which reduces a lot of
overhead. FlatBuffers is advertised as being especially useful in computer- or mobile
games as well as performance-critical data processing applications, where it has indeed
gained popularity.

Since encoding protocols play such a central role in interconnected systems and directly
dictate how a computer interprets a set of bytes, their design and implementations are
often scrutinized extensively and in great detail. Protocol Buffers (ProtoBuf), JSON,
XML, and other well-established formats have undergone extensive work to achieve
this. However, a comprehensive security evaluation of FlatBuffers remains notably ab-
sent in existing literature, leaving a critical gap that this thesis aims to fill. This thesis

1

contains an in-depth investigation of the FlatBuffers protocol, focusing on two areas:
Analyzing inherent flaws within the protocol that could be exploited in various scenar-
ios and evaluating the impact this has on real world applications. The necessity for such
research becomes clear when compared to already scrutinized protocols like ProtoBuf,
which have undergone similar detailed security analyzes.

The main contributions of this thesis are the in-depth analysis of the security properties
of the FlatBuffers encoding format as well as the reference implementations security
properties. Different attacks and exploits are demonstrated to be extremely effective
and cause severe service degradation in applications that exhibit common FlatBuffers
usage patterns, even when those applications follow all best practices and utilize every
available security mechanism. Furthermore, a systematic comparison of those results
as well as recommendations for securely handling FlatBuffers have been created.

The structure of this thesis begins with foundational concepts and theory, moves
through the practical implementation of measurement and analysis tools, and culmi-
nates in the evaluation and discussion of the findings.

• Section 2 lays out the essential concepts necessary for understanding the subsequent
research. It includes a general definition and explanation of schemas in data serial-
ization and communication protocols and what they are used for. Additionally, an
overview of code generation methods and their application in FlatBuffers is given,
followed by a detailed discussion of memory layout considerations, on top of which
the FlatBuffers protocol is built. Finally, a small demonstration of the basic usage
of FlatBuffers is given.

• Section 3 contains a comprehensive review of existing research and methodologies
relating to schema reverse-engineering, DOS vectors and attacks, the design of se-
cure communication protocols and discoveries relating to securely designing and
documenting an Application Programming Interface (API). Moreover this section
describes the exact scope and requirements within which this research was conducted
including an exact formulation of the resolved research questions.

• Section 4 is the first section containing results including an analysis of the validation
processes implemented by FlatBuffers. It also contains details about the attack vec-
tors inherent to FlatBuffers protocol design, which includes detailed examinations
of specific attacks.

• Section 5 then presents the other major results and goes into detail on security
mechanisms and general implementation quality of the different programming lan-
guages that flatc supports.

• Afterwards, Section 6 ties everything together, drawing conclusions about the effec-
tiveness and implications of the methods employed, and discusses the implications
of those results. It also contains guidelines for decreasing and mitigating the impact
of the discovered vulnerabilities.

2

• Section 7 and Section 8 then end by acknowledging the constraints and limitations
encountered during the research and drawing a summary of the main findings, con-
tributions, and potential directions for future research.

3

2 Background
This section explains foundational concepts required to understand the specific topics
and work described in this thesis. It provides basic introductions to the techniques
used in the development of consistent distributed systems which are also utilized by
FlatBuffers. Additionally, a foundational explanation of memory layout requirements
that dictate the design of the FlatBuffers encoding format is provided. To ensure proper
understanding of the described concepts, the use of FlatBuffers is demonstrated in a
simple example.

2.1 Schemafull Communication
Realizing communication within a distributed system can be done using a predefined
and strict messaging schema which defines a consistent and structured format for the
messages that different parts of the system use to exchange data. The schema dictates
the exact layout, type, and constraints of the data that can be sent or received. Com-
mon formats for these schemas include JSON Schema[2], ProtoBuf[3], and the XML
Schema Definition Language (XSD)[4].

Key concepts in message-handling involve several steps to ensure smooth communica-
tion within a distributed system. First, a Message Definition is established by creating
a schema using a specific schema-definition-language. This schema defines the structure
and types of all possible messages, and in some cases also other information. For exam-
ple, Remote-Procedure-Calls can be defined in gRPC[5] or XML-RPC[6]. At runtime,
messages then undergo Serialization, where they are converted into a format suitable
for transmission, typically binary or text-based formats. Upon receipt, these messages
go through Deserialization, where they are reverted to their original form as defined by
the schema. To ensure data integrity and conformance, Validation against the schema
should be performed on both incoming and outgoing messages against the schema.

Adopting a predefined schema brings numerous advantages. It ensures consistency and
predictability across the distributed system, with all components knowing the exact
message format, thereby reducing errors and misinterpretations. Type Safety is also
maintained, preventing type-related runtime errors. Another benefit is that the schema
acts as a contract between services, allowing proper version management and clear doc-
umentation of the represented interface. Interoperability can also be enhanced since dif-
ferent programming languages or platforms can communicate using a common schema
instead of relying on their own internal data representation. Automatic validation can
ensure the messages’ integrity and protect the robustness of the system.

However, there are drawbacks to this approach. The rigidity of strict schemas can be
a bottleneck if the system needs to evolve quickly, as any data structure changes re-
quire schema updates and may affect all services using it. This can introduce overhead,
as maintaining and validating schemas can be resource-intensive both in development
and runtime. Complexity in evolution arises when introducing new fields or modify-
ing existing ones, necessitating a thoughtful versioning strategy to maintain backward

4

compatibility. However, some schema systems support schema development that are
compatible to older schema versions. This is the case when using FlatBuffers for many
types of schema changes. The initial setup can be time-consuming, as it entails imple-
menting or integrating schemas and associated tooling into the development and de-
ployment workflow. Furthermore, performance can be be impacted, with serialization,
validation and deserialization potentially adding latency and computational overhead,
particularly for complex schemas.

Example use cases for predefined schemas include microservices, where reliable, docu-
mented, and predictable communication between different services is essential. They
are also employed in public APIs to define the structure of requests and responses and
in inter-service communication within environments where components are written in
different programming languages.

In summary, using a predefined and strict messaging schema introduces structure and
reliability to distributed systems, albeit at the expense of flexibility and potential over-
head. It is crucial to weigh these trade-offs against the specific requirements and con-
straints of the system being developed.

2.2 Code Generation
Code generation is the process in which tools automatically generate source code based
on predefined schemas or templates. It is often used when using message schemas for
communication to produce the boilerplate code necessary for serialization, deserializa-
tion and validation of messages based on the schema. By leveraging code generation,
developers can streamline the implementation of schemafull communication, ensuring
that their distributed systems remain consistent, reliable, and easier to maintain. How-
ever, they must also navigate the complexities and constraints introduced by this au-
tomated approach.

A typical workflow when using a schema in conjunction with code generators involves
the following steps. First, a schema is defined using a format like ProtoBuf or JSON
Schema. This schema specifies the structure, data types, and constraints for the mes-
sages. Next, specialized tools, such as protoc for Protocol Buffers or jsonschema2pojo
for JSON Schema read the schema files and generate the corresponding source code in
the desired programming languages. The generated code typically includes classes or
data structures that map to the ones defined in the schema, along with methods for
serializing, deserializing and validating these structures. Developers then integrate this
generated source code into their applications, allowing them to easily and consistently
handle messages as defined by the schema[1]–[3].

There are several advantages to this approach. Automatically generated code is con-
sistent with the schema, reducing the risk of discrepancies and ensuring that all parts
of the system adhere to the same format. It also eliminates the need for developers
to manually write boilerplate code, saving time and reducing the likelihood of human
error. Generated code often includes type-safe structures and methods, which help

5

prevent type-related runtime errors. Additionally, changes to the schema can be sys-
tematically reflected in the codebase by regenerating the code, simplifying updates and
maintenance. Building distributed systems that span different technological stacks can
often also be simplified when the code generator supports different programming lan-
guages and technologies.

However, this method is not without disadvantages. The development process becomes
dependent on the code generation tools, which may have limited capabilities or usabil-
ity. In certain cases, these tools may introduce bugs into any part of the system that
handles messages.

Introducing code generation into the build process is also often nontrivial as not all
build tools are readily equipped to handle it which may require additional configuration
as well as integration efforts. Generated code can be less flexible, as it adheres strictly
to the predefined schema or the code generator lacks customization options. Any cus-
tomization or tweaking may require manual modifications, which can be cumbersome
and complicate the build process even further[7]. Developers also need to familiarize
themselves with the schema-definition-language and the code generation tools that are
now part of their technology stack, which could necessitate a learning period. Moreover,
generated code may include additional overhead or inefficiencies that developers would
optimize out if writing the code manually.

2.3 Memory Layout of Data Structures
The term memory layout refers to the organization and arrangement of data in a
computer’s memory. Discussing memory layout involves understanding how the data
structure’s components (such as the elements in an array or the fields in a struct) are
stored in memory.

Good memory layout is important for performance optimization, memory usage, con-
currency and parallel processing. For performance optimization, cache efficiency is im-
proved when related data are stored contiguously, increasing the likelihood of cache hits
and thereby reducing latency. Additionally, algorithms perform better when data access
patterns align with the memory layout, such as sequential versus random access. The
amount of memory required also relates to the way that memory is organized. Aligning
data or introducing padding ensures that data elements are correctly positioned, lead-
ing to efficient access patterns despite potential memory waste. Tightly packed memory
layouts on the other hand can save space, which is beneficial for systems with limited
memory but only possible for those that don’t depend on alignment[8]. Proper mem-
ory layout can also minimize conflicts when multiple threads access data structures in
parallel.

However, restrictions are commonly present on modern systems. Data types typically
have specific alignment requirements, with compilers often inserting padding between
structure members to ensure correct alignment, possibly resulting in wasted memory.
If such alignment requirements are not met and a processor is asked to work with

6

improperly aligned memory, some hardware may complete the task with performance
degradation, while other hardware may completely reuse the instructed operation[9].
The order in which bytes are stored, known as endianness, can also differ between
systems, affecting data interpretation when moved between systems with different en-
dianness.

Consider the C struct from Listing 1. On many systems, due to alignment requirements:
• the struct itself is aligned on a 4-byte boundary as that is the largest alignment

requirement of any structs field.
• char a is at offset 0 from the struct start.
• int b may be placed at offset 4 (not 1) to align on a 4-byte boundary.
• short c may be placed at offset 8 (following the 4-byte int) or if the compiler decides

to tightly pack the structs content, at offset 2 between the other two fields.

The memory layout might thus include padding bytes between char a and int b to
ensure proper alignment, potentially resulting in more space being used than the sum of
individual field sizes. This, however, largely depends on the compiler, its configuration
and the target hardware for which a program is compiled.

1 struct Example {
2 char a; // 1 byte
3 int b; // 4 bytes
4 short c; // 2 bytes
5 };

Listing 1: An example C struct whose fields have different alignment requirements

Understanding memory layout helps in designing data structures that maximize per-
formance and efficiency by leveraging optimal memory alignment and cache usage. It
is a fundamental aspect when doing systems-level programming and developing perfor-
mance-critical applications. Since the goal of the FlatBuffers encoding format is to stay
as compatible to the hardware as possible, these layout aspects need to be considered
as well. Adhering to the system’s memory layout restrictions ensures that the data
structures work correctly and efficiently across different hardware architectures.

2.4 FlatBuffers Workflow
Assuming that data about a Person, specifically their name and an age should be en-
coded with FlatBuffers, the following steps must be performed to do so. This example
assumes that the Rust programming language is used and only includes explanations
pertaining to the encoding. Transmitting or receiving the encoded data is not shown
here since only the FlatBuffers specific parts are relevant.

1. Write a schema file:

This file contains all data types, including their relations and nestings, that will be
used by the application. Custom data types can be either of simple scalar values (e.g.
integers of various sizes, floats, strings, etc.) or complex / combined types such as

7

structs, tables, unions or vectors. Data types allow for optional fields, defaults, and
the ability to iterate on the schema without compromising backward compatibility.

An example schema is shown in Listing 2 which defines only a single data type called
Person that contains their age and name as transferred information.

2. Run the Code-Generator:

Use the flatc program to run a code generator specific to the target programming
language. For example, to generate Rust code in the current directory, flatc could be
invoked with flatc --rust schema.fbs. This would produce a schema_generated.rs
file which contains Rust type definitions as well as serialization, validation and de-
serialization logic according to the schema.

3. Encode a person’s data:

After being generated by flatc, the code from schema_generated.rs can be used like
any other. Listing 3 shows how a person whose name is “Erika Mustermann” and
age is 42 is encoded using the provided FlatBufferBuilder struct. In line 4, a new
FlatBufferBuilder is created, whose functions are subsequently used in lines 5 to
8 to create a Person object in the buffer and fill it with data. Finally, lines 10 and
11 use the FlatBufferBuilder API to mark the buffer as finished and retrieve the
encoded data in a byte slice format. Like any other byte slice, the encoded data
could now be transmitted via any preferred transport mechanism.

4. Decode a person’s data:

After having received an encoded person’s data into the encoded variable, a receiver
could validate and access the encoded data in a similar fashion to Listing 4. There,
in line 3 the received binary data is interpreted as a Person object, which resides at
the root of a FlatBuffers message. Line 4, which is a continuation of that statement,
explicitly instructs the program to panic with the message “Invalid Person data” if
the encoded variable does not contain valid data. Afterwards, the generated accessor
functions can be used to retrieve the person’s data as shown in lines 5 and 6.

1 table Person {
2 name: string;
3 age: int;
4 }
5
6 root_type Person;

Listing 2: An example FlatBuffers schema that defines a Person type.

8

1 use schema_generated::{Person, PersonArgs};
2 use flatbuffers::FlatBufferBuilder;
3
4 let mut fbb = FlatBufferBuilder::new();
5 let name = fbb.create_string("Erika Mustermann");
6 let person = Person::create(
7 &mut fbb,
8 &PersonArgs { name: &name, age: 42 });
9
10 fbb.finish(person, None);
11 let encoded: &[u8] = fbb.finished_data();

Listing 3: Example using code generated from the schema in Listing 2 to encode a
Person object

1 use schema_generated::root_as_person;
2
3 let person = root_as_person(encoded)
4 .expect("Invalid Person data");
5 assert_eq!(person.name(), "Erika Mustermann");
6 assert_eq!(person.age(), 42);

Listing 4: Example using code generated from the schema in Listing 2 to decode a
Person object

9

3 Scope and Related Work
This section presents and overview over the combined work that has already been done
on the topics of protocol design and security, protocol reverse engineering, patterns for
dependable and secure API design and prior work specifically on FlatBuffers security.
The exact formulation of the research questions guiding this thesis are also given and
explained in Section 3.2.

3.1 Related Work
Much work has already been done covering the different aspects of designing, protect-
ing and exploiting different protocols and data formats. This section focuses first on
reverse-engineering, which is often a requirement to exploitation, then presents research
into Denial-of-Service (DoS) vectors, attacks and scenarios and finally covers prior work
on the topic of FlatBuffers.

3.1.1 Protocol Extraction and Reverse Engineering

In the literature, protocol reverse engineering and schema reverse engineering are closely
related. Most protocol reverse engineering techniques can also be understood as schema
reverse engineering since the general rules of a protocol are usually known and only the
specific transmitted data types or messages are extracted. Related work exists on au-
tomatic protocol extraction, which can be further categorized into Generic Automatic
Extraction and Specific Protocol Extraction. These categories are then further subdi-
vided based on whether the extraction is performed from network traces or application
binaries.

3.1.1.1 Generic Automatic Extraction

Approaches in this category are agnostic of the protocol itself. They extract the se-
mantics from completely unknown protocols without any a priori knowledge and are
often used in identifying which bits are utilized as counters, offsets or data fields. Be-
ing agnostic of the protocol is a significant advantage regarding the scope in which
the techniques can be applied, however, there are notable drawbacks. Since these ap-
proaches operate generically, they cannot leverage protocol specific knowledge that
might be known before the analysis. For example, they cannot leverage that the Table
data structure in a FlatBuffers message is always encoded following certain rules that
makes them easy to identify. Simultaneously, these approaches struggle with nested
and complex schemas and can often only be used for gaining a basic understanding
of an assortment of bytes. Consider the example of a FlatBuffers table that includes
vectors with embedded tables. If the employed approach functions perfectly, it would
only perceive the structure as a combination of length fields, offsets and data fields
while not being able to identify protocol specific data types such as tables, vectors
or integers in the case of FlatBuffers. Consequently, a reverse engineer would need to
translate them into the structure of a FlatBuffers schema manually. While this is bene-

10

ficial for completely unknown protocols, when the protocol is known, it is advantageous
to employ extractions methods tailored to that protocol.

Such generic extraction techniques are implemented utilizing techniques such as n-
grams [10], sequence alignment algorithms [11], or delimiters [12] to tokenize messages
by splitting them into segments. Then, by comparing the values of these tokens, they
perform clustering to identify similar messages.

A prominent example is the Netzob software developed by G. Bossert, F. Guihéry, and
G. Hiet [11], as they have also co-published code that is still maintained nine years
later. For this purpose, the sequence alignment approaches of Needleman & Wunsch
[13] and other clustering algorithms are used to identify similar messages throughout
different inputs. However, as discussed before, the focus is less on the specific field
format of the messages and more on field boundaries and their role in the encoding
format.

There are also systems such as ReFormat by Z. Wang, X. Jiang, W. Cui, X. Wang,
and M. Grace [14] which is a system designed for protocol reverse engineering of en-
crypted messages. In contrast to Netzbob, ReFormat works on an application binary
instead of encoded messages. Its methodology involves finding and classifying bitwise
operations to detect potential cryptographic functions. The inputs and outputs of the
discovered functions are then marked using a technique called taint-tracking to identify
buffers affected by them. This allows the preceding unencrypted buffer to be found
and the plaintext to be extracted. This approach could be adapted to find messages
before encoding using the same methodology. While this can be used to reverse the
encoding of a specific message, a generalized message schema cannot be reconstructed.
Furthermore, it is not applicable when other parts of the application perform many
bitwise operations.

3.1.1.2 Specific Protocol Extraction

A simple example and very prominent example of extractors designed for specific pro-
tocols is the Wireshark tool which can automatically detect and parse a wide range
of network protocols, such as Transmission-Control-Protocol (TCP) streams, different
VPN tunnels or application data transferred via HTTP. Wireshark is able to handle
protocols such as TCP effectively because most are well-defined transport protocols
that have consistent encoding rules that are independent from the transported data.
This is not the case with protocols like ProtoBuf or FlatBuffers. In those cases, the
schema is agreed upon between communication partners before transmission and then
implicitly used[1], [3].

Analyzing protocols that use an implicit schema often requires specifically designed
tools. These may offer assistance by semi-automatically analyzing messages and letting
the user inspect and influence the analysis. One such example is the protobuf-inspec-
tor tool which can restore field boundaries and infer data types of ProtoBuf messages
based on observed messages. The tools strategy however cannot be easily adapted to

11

fit FlatBuffers messages because ProtoBuf retains much more schema information on
the wire, which is then utilized by the tool [15].

In cases where no automatic tool is available, manual protocol extraction is still of-
ten performed. One explanation for such a situation is the lack of implementations
for theoretically working techniques because often, one is published in theory but an
implementation is not. The PRE-List project contains many such cases [16]. Manual
reverse engineering is especially often seen in botnet analysis, where understanding the
communication mechanisms is important to enumerate or disable them, but intention-
ally kept hidden or obfuscated by the botnet authors. Thus, their protocols need to
be manually reverse-engineered as were the cases for e.g. GameOverZeus [17], Sality
[18], and many other botnets. An advantage to doing reverse engineering manually is
that the schema and the semantics of its fields are determined to a high degree of
satisfactions, however, it requires significant time and effort.

3.1.1.3 Reverse Engineering FlatBuffers

Some attempts have already been made to reverse-engineer messages encoded using
FlatBuffers. For example, multiple approaches are discussed on the FlatBuffers GitHub
repository under Issue #4258 [19].

One author suggests identifying known schemas via their file_identifier. This is a
field whose position in FlatBuffers messages is known and which is used to uniquely
identify schemas. While this method is very simple, it is only able to recognize already
known schemas and cannot reconstruct them. Moreover, including a file identifier into
a FlatBuffers message is optional. Another author gives a code example in Go on how
to recognize and decode the Table data type in arbitrary FlatBuffers messages. This is
a useful start since Tables are a useful and prominent data type that can be recognized
with high accuracy.

A FlatBuffers schema can generally consist of only a few structural types which can be
combined to form semantic types[20]. For example, Listing 2 shows a schema consisting
of a Person type that is encoded via the table structure. It contains the attributes name
which is a string, age which is an integer and children which is a list of more Persons.
The different structures used here (i.e. string, table, int, list) all have different rules
that dictate their encoding. Some of them (i.e. tables) are easier to recognize, as was
discovered on the aforementioned GitHub issue, but others are not.

This work from the FlatBuffers community has already been expanded upon in the
context of a research project which was conducted as part of the University of Ham-
burg’s information security courses. That work is in the process of being published but
since this process is still ongoing, an overview is given in. An overview over additional
reverse engineering insights regarding FlatBuffers, including those that were gained as
part of the research project is given in Section 4.2.

12

3.1.2 Denial of Service Vectors and Attacks

A DoS attack is a malicious attempt to render a computer, network service, or network
resource unavailable to its intended users. The primary goal is to temporarily or indef-
initely interrupt or suspend services of a target. Such attacks are often executed via
the network and aim to disable services that are offered on it.

To mitigate DoS attacks, several preventive measures can be employed: Traffic filtering
and rate limiting could be used to monitor and prevent traffic flooding, load balanc-
ing can be enabled to distribute traffic across multiple servers and intrusion detection
systems (IDS) can be installed to identify and address suspicious activities early. An
operator can also organize redundancy and failover systems to switch to when primary
systems are attacked.

3.1.2.1 DoS Vectors

Commonly used attack vectors in include volumetric attacks, protocol attacks, appli-
cation layer attacks, and distributed Denial-of-Service (DDoS) attacks.

Volumetric attacks, such as ICMP floods, UDP floods, and DNS amplification attacks,
aim to consume the bandwidth of the target by overwhelming it with high volumes of
traffic. Protocol attacks include techniques like SYN floods, which exploit properties
of the protocol, in this case the TCP handshake by sending numerous SYN requests
without completing the connection[21]. In the past, Ping of Death attacks, which send
malformed or oversized ICMP packets to crash the target system, were also a reliable
DoS vector[21]. Application layer attacks are similar in that they exploit certain behav-
iors of an application. The difference lies in the fact that an attacker technically con-
forms to the protocol, however their behavior impacts the application that is running
on top of that protocol. Examples for these kinds of attacks are Slowloris, which keeps
numerous connections to a target web server open to consume server resources[22], or
DNS amplification attacks in which the global Domain-Name-System is manipulated
into overwhelming a target[23]. DDoS attacks involve multiple compromised systems
working together to execute a coordinated and amplified attack on a single target,
making it tougher to mitigate.

3.1.2.2 Resources commonly impacted by DoS-Attacks

Attackers exploit various system properties as described above to deny service availabil-
ity. Often specific resources of a target system are targeted and brought to exhaustion.

An attacker could overload the CPU with excessive computations or complex requests,
exhaust memory by sending high-memory-consuming requests to force a system crash
or slow response, or network connections through SYN floods or connection floods
that exhaust available network sockets. Alternatively, a system’s bandwidth can be
exhausted by conducting high-volume attacks that choke the target’s network capacity,
disk I/O can be saturated with intensive read/write operations. Specific application
resources can naturally also often be exhausted, rendering it nonfunctional for legiti-
mate users.

13

3.1.3 Input-Validation and Language-Security

In computing, accepting untrusted input in a safe way has always been a difficult
task and is a constant source of high-profile security bugs (i.e. Heartbleed, GNU TLS
CVE-2014-3466, Apples goto fail; or OpenSSH GOBBLES). S. Bratus et al. [24] have
assembled the most common mistakes, many of which are applicable to the handling
of FlatBuffers messages.

The most important take-away is that an input can only be considered trusted when
it has been verified in a way that not only asserts the structure of each component but
instead also considers the context in which it is going to be used.

For example, when verifying the length or offset tag for a field, the validator must not
only ensure that those fields have valid values of their own, but also that they are valid
on their own (i.e. the offset does not point outside of the message) and that they agree
with the offset and length tags of other fields. Another example is that of object nesting
(which FlatBuffers supports). If a message schema allows the nesting of objects, the
shape of the resulting object tree must be verified according to the program semantics
or otherwise the program behavior is not predictable anymore [24].

3.1.4 FlatBuffers Security

The FlatBuffers designers and authors of the prevalent implementations, flatc, know
that validating FlatBuffers message is important and have invested some work into its
security. The community has also discussed the security as well as reverse engineering
aspects of FlatBuffers.

For example, in an issue on the flatc project page GitHub user d4l3k proposes a small
proof-of-concept that can parse parts of a FlatBuffers message without requiring any
knowledge about the messages schema. Their approach is very limited but nonetheless
shows that merely depending on a FlatBuffers schema being secret is not sufficient for
safeguarding [19].

The author of flatcc (which is the C language’s FlatBuffers implementation that is
separate from the main flatc implementation by Google) has also noted some general
issues when dealing with untrusted FlatBuffers messages in the “Verification” as well
as “Risks” sections of the “FlatBuffers Binary Format” documentation[25]. In their
own words, the goal of validation is “a basic fast assurance that the buffer is safe to
access. Any additional verification is application specific. The verifier makes it safe
to apply secondary validation” [25]. They state that while validation should check for
possible alignment issues and possible out-of-bound data access, properties such as
data overlapping, UTF-8 compliance of strings or validity of enum values are explicitly
not checked[25].

It is further stated that modifying encoded FlatBuffers values in-place is not safe, that
“it can be dangerous to print JSON or otherwise copy content blindly if there is no
upper limit on the export size” and that issues may arise from the capacity of a plat-
form’s native integer and size types[25].

14

3.1.5 Dependable API Design

Existing research has covered the question of what exactly makes a program and its
subsystems dependable. This is especially relevant as FlatBuffers are usually worked
with via libraries like flatc which should facilitate building secure programs through
its own design. G. Candea [26] argues that, if component interaction is done wrong,
failure conditions can cascade chaotically and bring whole systems down.

Y. Acar et al. [27] as well as P. L. Gorski, S. Möller, S. Wiefling, and L. L. Iacono [28]
have studied in detail the effect which the placement and presentation of security re-
lated information in documentation has on the quality of apps produced by consumers
of that documentation (or the respective software which the documentation is for). As
key results, those studies found that when developers have an incomplete understand-
ing about what a library or its parts do, or don’t understand options with which those
libraries are configured, they produce less secure apps. This can for example manifest
when developers of android apps don’t use specially designed account management
APIs that the android operating system provides and instead store user credentials
plainly on the filesystem because they did not know about the security issues of doing
so and weren’t aware of the more secure alternative APIs. To prevent issues like this,
the studies suggest that security should not have its own separate documentation pages
that are buried somewhere or linked to. Instead, security topics should be discussed
alongside general explanatory documents whenever they are relevant. Especially when
a library’s documentation contains code examples, developers tend to focus on those
examples and skim over larger, more detailed explanations that are parts of larger text
bodies. For this reason, security topics should always be included and code examples be
provided[28]. Another more basic course of action is ensuring that all the API surface
that is exposed to developers even has properly accessible documentation in the first
place[27]. This documentation should also include failure conditions so that systems
fail in a known way that can be expected and handled by its users[26].

Another study, this time specifically regarding SSL (nowadays superseded by TLS), was
done by S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith [29]. They systemati-
cally analyzed the usage of certificate and connection security related functionality and
afterwards held detailed surveys and interviews with the responsible app developers.
Their study strengthens the aforementioned findings in that a lack of understanding is a
main cause for insecure library usage. One of the more surprising points highlighted by
this study is that developers may misunderstand overarching concepts, i.e. how a public
key infrastructure conceptually operates, as well as details about specific function calls.
Even when working on configuration of Transport-Layer-Security, some developers did
not realize despite the name that the affected source code had security implications at
all. The authors then suggest different API design guidelines for improving upon this:
1. An API should generally use secure defaults. Validation checks that are necessary in

almost all use cases should thus be enabled by default. In the case of SSL validation,
the example was for hostname validation to be required by default.

15

2. API semantics should be explicit. While it is not always easy to provide an API that
provides good abstractions and is still explicit, arguing about what a function does
becomes easier if its semantics are clear.

3. At the same time, the set of available configuration options should be small, so as
to not overburden developers, which can lead to them choosing insecure settings.

3.1.6 Summary

The collected related works of the scientific community contains clear indications per-
taining to the importance of securely designing distributed systems from concept to
implementation. Topics such as validating untrusted inputs correctly and reverse engi-
neering are thoroughly, on an abstract and general level, thoroughly explored fields.
Nonetheless, due to the large number of radically different protocols and systems,
knowledge gaps are often present when specific details are concerned. FlatBuffers is
one such case which this thesis tries to remedy.

3.2 Research Questions
The goal of this thesis is thus to generate a dependable data set with which the im-
pact of certain protocol design decisions as well as implementation decisions can be
proven and evaluated. The related work section (Section 3.1) has already highlighted
the importance of dealing with untrusted input correctly and even though some secu-
rity issues are already known conceptually, their exact impact, especially in the context
of FlatBuffers, is not.

A dataset which includes all implementations of the FlatBuffers format would be de-
sirable, but this thesis nonetheless focuses on the recommended implementation only,
which is flatc. This procedure was chosen because flatc is the predominant implemen-
tation that is most widely used, is recommended by the official website, has a large
variety of features and includes support for almost all major programming languages.
It was hence deemed important to give this implementation an in-depth evaluation.
Specifically, flatc version 23.5.26 was subject to the work described in this thesis.

In doing so, the following research questions will be answered:

1. Under which circumstances can what attacks be successfully executed?
This includes aspects such as answering if a system-under-attack needs to perform
certain operations on a malicious FlatBuffers message, whether an attacker needs to
know the message schema (and in how much detail) and whether the programming
language in which flatc is used matters.

2. What impact does which attack have on the system-under-attack?
Different kinds of attacks using malicious FlatBuffers messages are shown in this
thesis, most of which are known to exist conceptually already. This thesis aims to
answer how exactly these attacks impact a vulnerable system. The usage of system
resources such as CPU time or memory of course depend on what exactly a program

16

is doing with the data it handles, but this thesis aims to answer which kinds of
impacts can be achieved by which attack method.

3. What is the relation between resource requirement on the attacker’s side
as compared to the effects on the system-under-attack?
When considering DoS-attacks, one of the important metrics when considering the
effectiveness of such attacks is how the resource usage between the attacking system
and the one being attacked relate to one another. In other words, a DoS-attack
is not as effective if generating a malicious payload requires more resources than
processing it does. Producing information regarding this relationship for different
kinds of attacks and systems-under-attack is another goal of this thesis.

4. Which relevance do the findings of this thesis have to real-world applica-
tions?
To assess the actual importance of this thesis’ contribution, it is paramount to de-
termine the impact which the examined attacks have on applications that are in use
today. In other words; It is important to know whether an attack or finding is only
relevant in highly theoretical and constructed scenarios or if an attacks preconditions
are fulfilled by normal usage patterns.

Although the security of networked applications was thoroughly evaluated during the
active research of this thesis, it was was nevertheless a critical requirement that no
active and publicly available systems availability were ever degraded in any way. Espe-
cially if those were operated by unaffiliated third parties. All attacks and exploits were
instead developed and evaluated in isolated systems.

17

4 FlatBuffers Protocol Analysis
This section contains a detailed explanation about the encoding details of FlatBuffers
(See Section 4.1). An examination into how the details of the encoding format can be
used to reverse-engineer a specific schema is included in Section 4.2 as schema knowl-
edge is often required for crafting specific exploits. Section 4.3 then presents different
kinds of attacks that utilize specific details of the encoding format for exploitation.

Generally, the scenario that is considered here is that of a distributed system which
uses FlatBuffers encoded messages for its communication. Such a system is shown in
Figure 2 where an attacker, Eve, who has gained knowledge about the systems schema
and determined it to be vulnerable against DoS attacks, performs one such attack
against the participant Bob. This attack disrupts the normal behavior operation of
Bob so that requests from the legitimate client Alice cannot be processed anymore.
The scenario was chosen as it is very general and applicable to almost all distributed
systems (assuming they use FlatBuffers). It is useful to discuss attacks that are useful
in such a generic scenario because they are therefore applicable and relevant to many
situations.

Figure 2: A scenario of a distributed system in which flaws in the FlatBuffer format
and system behavior are be used for a denial of service

4.1 FlatBuffers Encoding Rules
FlatBuffers schemas can generally be freely composed from primitive data types (e.g.
bytes, integers, floats, strings) and composition types like unions, lists, structs and
tables. Apart from from some edge-cases these can be nested and combined arbitrar-
ily. Each of these primitives has rules according to which they are encoded that are
described in the following sections.

18

4.1.1 Scalar Primitives

• Double- and single-precision floating point numbers are encoded using the IEEE-754¹
format.

• Signed integer numbers are represented using the two’s-complement.

¹https://standards.ieee.org/ieee/754/6210/

All numbers are available from 8 to 64 bit width and integers can be declared signed
or unsigned. All numbers are encoded as little-endian on the wire and aligned to their
own size. They are also always encoded inline and never referenced via offsets.

4.1.2 Structs

Structs are the simplest way to combine other data types. They contain their field val-
ues linearly appended to each other while respecting the fields alignment rules. There is
no additional metadata encoded in the buffer identifying a struct’s format or content.

4.1.3 Tables

Tables are the most common and most versatile type of data structure that FlatBuffers
offers. It is similar to a struct in that it contains named fields of different types but
also offers advanced features.

For example, fields can be omitted when serializing objects or left at their default value.
Doing this results in that field’s data taking up no space in the encoded message. It
is also possible to evolve a schema’s table definitions while keeping forwards and back-
wards compatibility to messages and clients using an older schema version. Both these
features are implemented by encoding storing addition information in the encoded for-
mat. This additional information is stored in an extra data structure called a VTable.

Table objects are encoded as shown in Figure 3. Whenever a table is referenced (for
example being the root object of a buffer) it firstly contains another offset towards the
accompanying VTable. Note that this is the only type of offset present in FlatBuffers
that point backwards. After the VTable offset, a table encodes the values of its fields
linearly and respecting field alignment. As discussed before however, which field’s data
is present or omitted is not always static, so a decoder needs to respect the referenced
VTable. The VTable describes how many bytes the VTable as well as the referencing
table need. Afterwards it has an entry for every field present in the schema with the
offset from the start of the table as value. If an entry’s value is 0, the corresponding
field is decoded with its default value. Similarly, if a decoder expects more fields than
are described by the VTable (for example when the schema has evolved and an older
buffer is decoded), those fields are also decoded with their default values. The field
values then have their own decoding rules according to the data type they encode.
While most types are encoded inline, other tables are once again referenced using an
offset which means only the offset is stored as a field’s value.

19

https://standards.ieee.org/ieee/754/6210/

Figure 3: Example encoding of a table with two fields. The table data is marked orange
and the accompanying VTable in blue.

4.1.4 Variable-Length Vectors

FlatBuffers includes support for lists of other data types whose child type is chosen at
schema-build-time but whose length is only known at runtime. These lists are encoded
as shown in Figure 4, which is to say they store their element contiguously aligned
prefixed by a 32-bit unsigned element count. Vectors themselves are never stored inline
but rather always referred to by offsets.

Figure 4: Example encoding of a vector with 3 elements. Vector metadata is marked
blue and element data in orange.

4.1.5 Strings

Strings are stored as byte vectors with an additional null-terminator that does not
count towards the vector’s length. They otherwise follow the same encoding rules as
vectors themselves.

String data should be UTF-8 encoded but this is not strictly required by the specifi-
cation.

4.1.6 Enums

Enums are a way to safely group a set of named constant values into a type that can
only ever have one of those values. Enums can be backed by any unsigned integer
primitive depending on the number of variants needed and are encoded on the wire by
encoding only the backing integer. No additional metadata about this data representing
an enum is present in the encoded format.

4.1.7 Unions

Unions are encoded by combining an enum describing the union variant followed im-
mediately by the value.

20

4.1.8 Offsets

FlatBuffers is very explicit in the way it handles offsets. All offsets used in encoded
message are 32-bit unsigned integers and their direction is predetermined based on the
place in the buffer the offset is used. In most cases, offsets point forward (towards higher
buffer indexes) but there is the exception of VTable references (see Section 4.1.3).

This also means that it is impossible to create cyclic object references in a buffer since
an object can not refer to itself or other objects that are placed before it.

4.1.9 Other Encoding Considerations

FlatBuffer messages as a whole also adhere to a largely consistent layout. The first 4
bytes of a buffer are always required to be an offset to the root object of the buffer which
is also always required to be a table. Between these two is the table’s accompanying
VTable (since the table → vtable offset always points backwards). One such encoding
can be seen in Figure 3. Additionally, a buffer can include a filename attribute which
is a FlatBuffers encoded string that can be freely chosen at encoding time and which
is placed directly after the initial root offset.

FlatBuffers data types also follow alignment rules which may result in additional
padding bytes being generated. For example, structs which are always stored inline in
their containers are themselves aligned according to the greatest alignment contained
within them. When structs with large alignments are to be stored in e.g. tables, the
encoder may choose to fill the padding space with the data of other, smaller fields
contained in the table. This is unfortunately not always possible, for example when
the table contains only that one struct or the container type is not a table at all (such
as a vector). In those situations, the padding bytes are filled with zeros and otherwise
ignored.

4.2 Reverse Engineering Considerations
When evaluating the attack surface of a potential target that uses FlatBuffers for com-
munication, it is essential to know the schema which is used by that target. Inspired
by the community’s prior work, a tool specifically designed for reverse-engineering a
FlatBuffers schema was developed in the course of a master project at the University of
Hamburg’s information security courses. This tool utilizes the few bits of structural in-
formation that are present even in an encoded FlatBuffers message to figure out which
structural types that message could possibly contain.

To use this reverse-engineering tool, encoded FlatBuffers messages must first be cap-
tured. How to do so is outside of the tools scope but for example, other tools like tcp-
dump could be used for such a purpose. Once, a sufficiently large data set is assembled,
the captured messages can be analyzed. The developed tool does so by attempting to
interpret a message as each possibility that exists in the FlatBuffers type system (i.e.
table, vector, enum, int, etc.). When a possibility is determined to be a structurally
valid interpretation of the underlying bytes, and the interpreted type value contains

21

more fields, those fields are treated the same. The result of this analysis is a graph data
structure that contains all possible variants as which a message could be interpreted.
Naturally, since FlatBuffers has only few markers and encoding rules restricting inter-
pretation, this resulting graph is very large, especially for complex schemas. For this
reason, the analysis process can be repeated with multiple messages (all of the same
schema) to build an intersection and hence reduces the size of the graph.

Listing 5 shows the described reverse-engineering algorithm in pseudocode. In Line 3,
the entry point to the algorithm is shown which accepts an arbitrary byte buffer as
input. The main functionality is implemented in the function parse_unknown() which
attempts to interpret the buffer using all known data types such as an integer, a float
and a table. Finally, the analysis result is intersected with previous results in line 4.

Figure 5 then shows an example binary value as well as a graph data structure similar
to the ones produced by the reverse-engineering tool. In this case, the binary value
could be interpreted to be either a string, a 64-bit integer or a combination of smaller
integer values packed into a struct which the shown graph also displays.

1 let result = *;
2
3 fn analyze(buf) {
4 result = intersect(
5 result,
6 parse_unknown(buf)
7);
8 }
9
10 fn parse_unknown(buf) {
11 return parse_as_int(buf) +
12 parse_as_float(buf) +
13 parse_as_table(buf) +
14 ...
15 }
16
17 fn parse_as_table(buf) {
18 return parse_vtable(buf)
19 .map(|field| {
20 parse_unknown(field)
21 })
22 }
23
24 ...

Listing 5: Pseudocode of the reverse-engineering algorithm

22

Root

String

int64

Struct (2 32-bit fields)
int32

int32

Struct (4 8-bit fields)

int8

int8

int8

int8

Figure 5: A set of bits that can be interpreted in different ways along with the resulting
graph data that would be produced by the developed reverse-engineering algorithm.

The reverse-engineering tool is constructed with the following modules:
• An encoding module which parses the on-the-wire format of different FlatBuffers

base types. It is completely independent from the actual research of this thesis and
can pretty much be used as a generic parser for FlatBuffers independently from a
schema. The functions defined in this module take a &[u8] buffer as argument and
return a either an error if parsing failed or a specific type with safe accessors to the
encoded data. It is implemented based on the FlatBuffers Internals documentation
from flatc[20].

• A typing module that stores collected information about a schema in a memory-
efficient way. It also implements type intersection and duplicate pruning which are
needed during analysis.

• An introspection module which combines the two modules before. The functions
in this module try to decode a buffer and if successful store the result in a type db.
If the decoded type requires it (e.g. for a table), further introspection is performed
on discovered child data (for all fields in the case of a table).

Parts of this infrastructure work have been reused for this thesis, for example to con-
struct and introspect the various attack payloads that were used in Section 5.

As mentioned before, the general program structure as well as encoding rules for most
FlatBuffers data types have been implemented as part of the Master project. Due to
that project’s time constraints, the resulting work can only be considered a proof con-
cept as it does not yet support the encoding rules of Union data types as well as some
specializations for type combinations. Nonetheless, the developed tooling was impor-
tant for developing and verifying the different exploits introduced in the next section.
It served as a baseline for all the work being done in this thesis while also highlighting
that the mere secrecy of a communication schema is in no way sufficient in protecting
a FlatBuffers-based communication endpoint as the schema can be reverse-engineered
by a malicious actor.

23

4.3 Attack Vectors against the FlatBuffers format
Applications using FlatBuffers are vulnerable to certain attacks almost regardless of
their implementation. Some risks and vulnerabilities just arise from the design of the
encoding format and need to be treated with great care so as to not invite greater
vulnerabilities that arise from mistreating these risks.

4.3.1 Format Violations

This category does not technically constitute an attack against the FlatBuffers format
but rather its implementation. Conceptually, the kinds of attacks contained in this
category intentionally violate certain encoding rules in order to exploit assumptions
in a FlatBuffers implementations decoding and interpretation logic. Examples include
invalid offsets that point outside of the encoded message, various forms of invalid string
encodings, and other constructions in which two parts of a message should agree but
don’t. Optimally, these attacks don’t impact a target system at all because all systems
should validate all received messages and gracefully decline to process invalid ones. Re-
lated work, however, suggests that developers often make mistakes in security critical
implementations or, as is the case for flatc, explicitly define certain invalid encodings
as out-of-scope for validation. This suggests that, in reality, format violations may be
able to cause a wide range of unpredictable behavior in victim applications.

4.3.2 Directed-Acyclic-Graph (DAG)-Explosion Attack

As discussed before, the FlatBuffers protocol provides the data structure of tables to
hold arbitrarily structured data. They are encoded as described in Section 4.1.3. Under
certain conditions a malicious sender is able to utilize these encoding rules so that a
small encoded buffer grows exponentially large when its data is traversed.

The attack works similarly to a zip-bomb[30] or XML-bomb[31] and exploits the fact
that offsets to tables are not enforced to be unique in a FlatBuffers message. Thus the
same table data can be referenced any number of times without having to be copied.

A schema is vulnerable to DAG-Explosion attacks under the following conditions:
• It contains a type definition that is realized as a table
• That table is used somewhere in a list or array

The potential attack impact further varies depending on how many levels of List of
Table nestings there are. Of course, a self-recursive schema is maximally vulnerable
since it contains theoretically infinite levels of such nestings.

Listing 6 shows an example schema that contains the self-referential data type
VulnTable and which is vulnerable against DAG-Explosion attacks. Figure 6 then shows
a possible encoding of an attack against this vulnerable schema. The shown attack first
contains a root value of VulnTable with the following field values:
• space_waste (line 9) is set to its default value. This means that the value is not

stored in the encoded payload but instead synthesized by a decoder on the fly. It
makes the attack payload smaller because no space is required to store this value.

24

• children (line 10) is set to a list containing 𝑛 items where 𝑛 can be chosen arbitrar-
ily. Where the exploit comes in is that each of these children is actually the same
VulnTable object.

This encoding schema can be repeated any number of times; in this case once more.

1 namespace SampleExploits.DagExplosionSchema;
2
3 // A struct that does nothing but takes up a bit of space in memory
4 struct LargeStruct {
5 ...
6 }
7
8 table VulnTable {
9 space_waste: LargeStruct;
10 children: [VulnTable];
11 }
12
13 root_type VulnTable;
Listing 6: A sample FlatBuffers schema that is vulnerable to DAG-Explosions

Figure 6: Schematic representation of a DAG-Explosion payload using Listing 6

Using the schema explained above, storing the deduplicated table data would require
memory in the dimension of 𝑛𝑚 where 𝑛 is the number of table references in each list
and 𝑚 is the number of nesting levels. Encoding the attack payload on the other hand
only required 𝑚 tables in addition to 𝑚 ⋅ 𝑛 offsets stored in vectors. The resulting size
dimensions are Θ(𝑛𝑚) for an expanded representation and Θ(𝑛 ⋅ 𝑚) in encoded form.
This mismatch between polynomial and exponential growth is the problem exploited
by a DAG-Explosion attack.

Other constructions of DAG-Explosions are also viable. For example, instead of a re-
cursion using vectors, a binary tree node that always contains two children of its own
type is equal to a recursive vector where the vector length is always two. While alter-
native DAG-Explosion compositions differ in exact details, the concept stays the same.
For this reason, only the recursive vector construction is examined further.

25

4.3.3 Data Overlap Attack

Another attack possibility for constructing malicious messages is the construction of
unexpected overlaps. Overlapping data can lead to a number of issues similar to work-
ing with Unions in C especially when the overlapped data is being written to. For
example, a set of bits which are overlapped to be interpreted as an integer as well as
a boolean can lead to undefined behavior if, for example, the integer value 3 is written
to it. 3 is, after all, not a valid value for a boolean. This section explains two different
constructions for overlapping data, both equally dangerous.

The simplest form of overlapping data is to store multiple fields of one table at the
same position in memory and describe that layout using a VTable that is constructed
accordingly. An example is shown in Listing 7. There, a table Root is defined which
contains two fields of different types. Those two fields are then encoded in a way so
that they both point to the same area. When accessing root.numbers, 0x4 is interpreted
as the length of the vector with the following data being 32-bit signed integer values.
Accessing root.person on the other hand interprets the same 0x42 value that was an
integer in the previous case as a VTable offset and everything else as table data.

Another, more complex, form of overlap is present when not just fields inside one table
are overlapping but when completely unrelated data structures are stored at the same
position. This attack involves setting offsets in a way that the pointed-to-data overlaps.
They might originate from the same table but don’t have to. Any type that is encoded
by offset can be overlapped with any other data in a buffer as long as the offset direction
allows it (remember: offsets only point further into the buffer (See Section 4.1.8)).

1 table Person {
2 …
3 }
4
5 table Root {
6 person: Person;
7 numbers: [int];
8 }
9
10 root_type Root;

Listing 7: An example FlatBuffers schema along with a possible encoding of it that
contains such an overlap.

26

5 Practical Security Evaluation
The evaluation is split into two parts. First, various Open Source projects’ schemas are
analyzed in Section 5.1. The different languages supported by flatc are also evaluated
for their built-in security mechanisms in Section 5.2. Afterwards, the DAG-Explosion
attack is given special attention in Section 5.3 where the impacts that such an attack
can have on a system is discussed. In doing so, the research questions explained in
Section 3.2 are answered.

This section aims to provide detailed responses to the research questions formulated in
Section 3.2. To briefly repeat, this entails answering which preconditions are required
to execute attacks, what impact each attack has on the target, how many resources are
bound on the attacker’s and victim’s systems, and how relevant the discussed attacks
and vulnerabilities are for real-world applications.

5.1 Real-World Vulnerable Schemas

5.1.1 GitHub Schema Crawling

For evaluation of the schema analysis algorithm as well as for the part of this thesis
that evaluated publicly available schemas themselves, it was crucial to have a large
data-set of schema files. This dataset was created in the process of this work and is
called flatbuf-folklore. It contains the metadata and FlatBuffers schema data shown in
Table 1. It enables deduplication of schema texts that might be used in many reposi-
tories e.g. forks.

schemas
schema_id schema_text valid

text text integer

githubmeta
schema_id repository file_path repository_url

text text text text

Table 1: The schema of the folklore database

The best source for publicly available source code (which schema files can be consid-
ered being) is GitHub with over repositories. GitHub also offers a public API that can
be used to search all public repositories using a dedicated search syntax². This search

²https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28

API was used with the filter expression listed in Listing 8 to retrieve 496 from 1.064
repositories.

27

https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28

1 table extension:fbs size:>255 size:<65536 in:file
Listing 8: The search-expression used to filter for public schema files

5.1.2 Automated Schema Analysis

For analyzing a schemas vulnerability regarding DAG-Explosion attacks (see Sec-
tion 4.3.2) a custom script has been built that uses the folklore dataset, analyzes the
contained schemas and calculates a vulnerability score.

The script uses flatc and performs the following steps:

1. Fetch a random schema from folklore.
2. Convert the schema text into a machine readable representation using flatc.

This works by writing the schema text to a file, then calling flatc to generate an
intermediate representation of the schema³. This intermediate representation is a
FlatBuffers encoded binary blob. That binary blob is then read back into the pro-
gram and decoded using the reflection schema provided by flatc4.

3. The schema is then walked from its root in depth-first order and converted into one
flattened list which has the path in the schema as its item.

This path description brought into human readable form could look like the path
seen in Listing 9. There, the script analyzed the Apache Arrow schema and found
a recursive definition of Field::children referring to other Fields via a vector. As
discussed in Section 4.3.2 this is a prime example of a schema vulnerable to DAG-
Explosions.

1 /org.apache.arrow.flatbuf.Schema::fields/[]
2 /org.apache.arrow.flatbuf.Field::children/[]
3 /org.apache.arrow.flatbuf.Field::children/[]
4 /org.apache.arrow.flatbuf.Field::children/[]
5 /org.apache.arrow.flatbuf.Field::children/[]
6 /…

Listing 9: An example of a single path description of a schema vulnerable to DAG-
Explosions.

4. All vulnerable paths of all analyzed schemas are aggregated and stored back into a
database for further manual verification and analysis.

³https://flatbuffers.dev/intermediate_representation.html
4https://github.com/google/flatbuffers/blob/fb9afbafc7dfe226b9db54d4923bfb8839635274/

reflection/reflection.fbs

5.1.3 Results

Using the procedure described above, 496 unique schemas were analyzed from 1064
different GitHub repositories. In this analysis, some schemas were found to principally
vulnerable against DAG-Explosions. Many of those store generic other data structures

28

https://flatbuffers.dev/intermediate_representation.html
https://github.com/google/flatbuffers/blob/fb9afbafc7dfe226b9db54d4923bfb8839635274/reflection/reflection.fbs
https://github.com/google/flatbuffers/blob/fb9afbafc7dfe226b9db54d4923bfb8839635274/reflection/reflection.fbs

e.g. ProtoBuf inside FlatBuffers, store graph data e.g. the node graph in a visual pro-
gramming editor, or are data processing libraries which must also be able to handle
arbitrarily complex data provided at runtime. The most prominent and high profile
schemas found to be vulnerable were those of Tensorflow Lite for Microcontrollers
(tflite-micro) and Apache Arrow and the Cocos2D editor.

In the case of tflite-micro alone, 105 different data paths were found that could
lead to large expansion in a DAG-Explosion attack. tflite-micro was also not found
to contain any references to the flatbuffers::Verifier struct apart from the defini-
tions generated by flatc. The generated validation functions for the root type (bool
VerifyModelBuffer(::flatbuffers::Verifier &verifier);) was also not found to be
referenced anywhere in the tflite code base. This suggests that the tflite authors con-
sider the model files (which is the part that’s encoded using FlatBuffers) trusted and
not requiring validation. While one could argue that models are usually chosen, tested
and integrated during development and are not provided dynamically by users at run-
time, it is still a risk to skip the simple step of validating model files at all. This risk
is especially relevant when considering that developers don’t always train models from
scratch and instead may rely on pre-trained models provided by third parties5. Down-

5https://www.kaggle.com/models?format=lite

loading models from the internet and loading them into a system without validating
the underlying file format may be technically described as a bad idea. This is especially
true when considering that tflite-micro aims to bring machine learning models to em-
bedded platforms, which may behave differently when handling the same model file. A
developer’s test device might ignore invalid data alignments in a model file and process
it just fine while other deployment platforms might not. This would lead to very hard
to debug faults during deployment.

Similar to tflite-micro, the Cocos2D editor was also not found to include any calls to
validation related FlatBuffers functions. The FlatBuffers format is used by Cocos2D
for various internal representations e.g. the bone structure of a model. These files are
usually created when developing or packaging a game but nonetheless, not verifying
their structure in any way is certainly negligent and causes a large attack surface on
at least the editor and possibly packaged games as well.

Regarding Apache Arrow: While the schema itself contains the exploitable pattern
of storing a type recursively in itself with an additional vector in between (see Sec-
tion 4.3.2), the authors take care to not allow that fact to be exploitable. They do this
by binding the allowed number of tables to the size of the encoded FlatBuffers. In doing
so, they ensure that messages which contain a lot of data and thus a lot of tables pass
this validation while DAG-Explosions which gain their effectiveness by reusing large
parts of the buffer don’t. To perform this validation, the Apache Arrow authors use the
validator provided by flatc with the construction arguments shown in Listing 10.

29

https://www.kaggle.com/models?format=lite

1 bool VerifyFlatbuffers(const uint8_t* data, int64_t size) {
2 flatbuffers::Verifier verifier(
3 data, size,
4 /*max_depth=*/128,
5 /*max_tables=*/(8 * size));
6 return verifier.VerifyBuffer<RootType>(nullptr);

Listing 10: Verifier construction in Apache Arrow

5.2 FlatBuffers Language Implementation Comparison
flatc ships with code generators and support libraries for the languages C++, Java,
C#, Go, Python, JavaScript, TypeScript, C, PHP, Dart, Lobster, Rust and Switft.

5.2.1 Language Comparison Environment

For the evaluation, the scenario introduced in Section 4 is implemented by a simple
TCP server in the languages C++, Java, C#, Go, Python, TypeScript and Rust. C was
skipped because of its similarity to C++ where one of the two was deemed enough and
also because C support is not implemented by flatc but by flatcc instead. Similarly,
JavaScript was skipped because the TypeScript implementation is the same one just
with added type annotations. Other languages were deemed too niche to be worth the
effort and an iOS device was not available to evaluate the Swift implementation.

The TCP Servers were configured to accept a schema that is intentionally vulnerable
to the different attacks discussed in Section 4. It is shown in Listing 11 and the algo-
rithm is drawn up as pseudocode in Listing 12. The algorithm and schema are crafted
specifically for this evaluation and designed to evaluate all parts of a received buffer in
a simple way so that possible attacks are as effective as possible. Whatever a user of
FlatBuffers can do wrong, these servers do wrong. To summarize, each server listens
for incoming FlatBuffers messages via TCP and interprets any received messages with
the given schema. Validation is enabled and run (if the language has a validator imple-
mentation). Afterwards, the received data is walked recursively and the vec_data and
name attributes of the root object are evaluated and printed.

30

1 namespace ThesisSell.ImpactEval;
2
3 struct LargeStruct {
4 a: uint64;
5 ...
6 l: uint64;
7 }
8
9 table SelfTable {
10 space_waste: LargeStruct;
11 children: [SelfTable];
12 name: string;
13 vec_data: [uint8];
14 }
15
16 root_type SelfTable;

Listing 11: The vulnerable schema that was used for this evaluation

1 def main():
2 conn = wait_for_tcp_connection()
3 raw_buf = conn.receive()
4 root_table = SelfTable.from_root(raw_buf)
5 print("Sum:", sum(root_table.vec_data))
6 walk_table(root_table)
7
8 def walk_table(root):
9 if root.name is not None:
10 print("Got name {root.name}")
11 for child in root.children:
12 walk_table(child)

Listing 12: The algorithm that is implemented in different programming languages for
this evaluation

The environment of course also included an attacker, that is a TCP client which con-
nects to the TCP servers and intentionally sends malicious payloads to them. This
client implements the attacks listed below to evaluate the behavior of the servers.

1. DagExplosion

DAG-Explosion attacks are described in detail in Section 4.3.2 and a schematic
representation of a DAG-Explosion attack is shown in Figure 6. The client of this
evaluation implements such an attack with a configurable amount of levels of nesting
as well as list length on each level.

This attack is expected to require significant time for processing and to be able to
exhaust a victim application’s memory if the message is attempted to be converted
to a linear format.

2. InvalidStringEncoding

31

This experiment sends a string value that is not a valid UTF-8 value in the
SelfTable.name field to the servers. The FlatBuffers specification states that strings
must be UTF-8 encoded[20] which this experiment violates. Since the server algo-
rithm evaluates and prints these strings, the experiment allows monitoring how each
language’s implementation reacts to such incorrectly encoded strings.

The concrete payload sent by the client is shown in Listing 13. The string framing
(e.g. null terminator and length prefix) is valid while its content is set to byte 0x80
which is invalid because it indicates a continuation byte while no other byte is pre-
sent in the string.

1 string (SelfTable.name):
2 +0x18 | 0B 00 00 00 | uint32_t | 0x0B (11) | length of string
3 +0x1C | 48 65 6C 6C | char[11] | Hell | string literal
4 +0x20 | 6F 20 57 6F | | o Wo |
5 +0x24 | 72 6C 64 | | rld |
6 +0x27 | 00 | char | 0x00 (0) | string terminator

1 string (SelfTable.name):
2 +0x18 | 01 00 00 00 | uint32_t | 0x01 (1) | length of string
3 +0x1C | 80 | char[1] | � | string literal
4 +0x1D | 00 | char | 0x00 (0) | string terminator

Listing 13: Comparison of two annotated FlatBuffers messages, one of which is valid
while the other is not. The incorrectly encoded UTF-8 content is marked orange.

Expected results from this attack vary. A victim system could potentially fail unex-
pectedly or enter a state of undefined behavior if UTF-8 strings are strictly required.
Alternatively, if a programming language neither requires nor expects string to be
valid UTF-8, the encoding error could go unnoticed.

3. InvalidStringLength

This experiment, similar to the one before, sends an incorrectly encoded string to
the target server. In this case, however, the string data is valid while its framing is
invalid because the length prefix is shorter than the actual string data is long. This
results in the string not having a valid null terminator. The exact encoding is given
in Listing 14.

32

1 string (SelfTable.name):
2 +0x18 | 1D 00 00 00 | uint32_t | 0x1D (29) | length of string
3 +0x1C | 6E 61 6D 65 | char[29] | name | string literal
4 +0x20 | 20 77 69 74 | | wit |
5 +0x24 | 68 20 69 6E | | h in |
6 +0x28 | 76 61 6C 69 | | vali |
7 +0x2C | 64 20 76 65 | | d ve |
8 +0x30 | 63 74 6F 72 | | ctor |
9 +0x34 | 20 6C 65 6E | | len |
10 +0x38 | 67 | | g |
11 +0x39 | 74 | char | 0x74 (t) | string terminator
12
13 unknown (no known references):
14 +0x3A | 68 00 00 00 00 00 | ?uint8_t[6] | h..... |
Listing 14: An annotated FlatBuffers message that contains an incorrectly framed
string. The incorrect string length is marked orange and the thus left over string

content blue.

4. InvalidVecLength

Similar to InvalidStringLength this experiment constructs a vector whose length pre-
fix is invalid. The difference is that in this experiment, the length prefix is too large
and that the impacted data is not a string. Strings might be handled in a special
way so this experiment also doubles in uncovering potential differences there. The
exact encoding is shown in Listing 15.

1 vector (SelfTable.vec_data):
2 +0x18 | A4 00 00 00 | uint32_t | 0xA4 (164) | length of vector
3 +0x1C | 55 55 55 55 | uint8_t[164] | UUUU | vector data
4 +0x20 | 00 00 00 00 | | |

Listing 15: An annotated FlatBuffers message that contains a vector with an out-of-
bounds length prefix. The vector length pointing outside of the message is marked

orange.

A successful execution of this attack can lead to out-of-bounds accesses. By the C+
+ definition, this may already constitute undefined behavior. In practice, out-of-
bounds accesses could lead to leaking secrets or causing a program to crash when it
attempts to access invalid memory regions.

5. InvalidForwardOffset

In this experiment, the attacking client constructs a buffer in which the offset to the
SelfTable.name field points outside of the buffer. The exact encoding is shown in
Listing 16.

33

1 root_table (SelfTable):
2 +0x10 | 0C 00 00 00 | SOffset32 | 0x0C (12) | offset to vtable
3 +0x14 | A4 00 00 00 | UOffset32 | 0xA4 (164) | offset to field `name`

Listing 16: An annotated FlatBuffers message which contains an offset to outside
the message. The offset pointing to data outside the message is marked orange.

The exploit scenario is the same as with the InvalidVecLength attack in that the vic-
tim is intended to be manipulated into performing out-of-bounds memory accesses.
The difference is the that the exploit is delivered through a different part of the
FlatBuffers format.

6. InvalidBackwardOffset

This experiment also constructs a buffer with an invalid offset except that in this
case, the manipulated offset is the offset to a VTable and it is constructed to point
to a memory location before the message. The exact encoding is shown in Listing 17.

1 root_table (SelfTable):
2 +0x10 | 64 00 00 00 | SOffset32 | 0x64 (100) | offset to vtable

Listing 17: An annotated FlatBuffers message which contains an offset to before the
message. The offset to the root_table’s VTable, which points to before the buffer

starts is marked orange.

The exploit scenario is the same as with the InvalidVecLength attack in that the vic-
tim is intended to be manipulated into performing out-of-bounds memory accesses.
The difference is the that the exploit is delivered through a different part of the
FlatBuffers format.

7. InvalidRootOffset

The buffer constructed in this experiment also uses an invalid offset as its method
of attack. In this case, the affected offset is the very first value encountered in any
FlatBuffers message: The offset to the root table that is contained in the message.
This is constructed as a separate experiment to evaluate whether the root offset is
handled in a special way by different language’s implementations. The exact encod-
ing is shown in Listing 18.

1 header:
2 +0x00 | 64 00 00 00 | UOffset32 | 0x64 (100) | offset to root `SelfTable`

Listing 18: An annotated FlatBuffers message which contains an invalid root object
offset. The invalid root offset (which is the also the only content of this message) is

marked orange.

The exploit scenario is the same as with the InvalidVecLength attack in that the vic-
tim is intended to be manipulated into performing out-of-bounds memory accesses.
The difference is the that the exploit is delivered through a different part of the

34

FlatBuffers format. This exploit is especially important to consider as it requires
no knowledge of the message schema in use as the exploit payload (See Listing 18)
contains only a single 4 byte offset and no further schema specific data.

8. AttributeOverlap

This experiment overlaps different attributes of the same table as discussed in Sec-
tion 4.3.3. Its goal is to verify how the different language’s validators check for these
kind of constructions. The exact encoding is shown in Listing 19.

The impact of this attack is not directly predictable as most conditions induced by
it fall under the category of undefined behavior. If the attack can be successfully
executed, it can cause a wide variety of problems that strongly depend on how ex-
actly the overlapped data is used by an application.

1 vtable (SelfTable):
2 +0x04 | 0C 00 | uint16_t | 0x0C (12) | size of this vtable
3 +0x06 | 04 00 | uint16_t | 0x04 (4) | size of referring table
4 +0x08 | 00 00 | VOffset16 | 0x00 (0) | start of `space_waste`
5 +0x0A | 00 00 | VOffset16 | 0x00 (0) | start of `children`
6 +0x0C | 04 00 | VOffset16 | 0x04 (4) | start of `name`
7 +0x0E | 04 00 | VOffset16 | 0x04 (4) | start of `vec_data`
8
9 root_table (SelfTable):
10 +0x10 | 0C 00 00 00 | SOffset32 | 0x0C (12) | offset to vtable
11 +0x14 | 04 00 00 00 | UOffset32 | 0x04 (4) | offset to `name`
12 +0x14 | 04 00 00 00 | UOffset32 | 0x04 (4) | offset to `vec_data`
13
14 string (SelfTable.name):
15 +0x18 | 0F 00 00 00 | uint32_t | 0x0F (15) | length of string
16 +0x1C | 6F 76 65 72 | char[15] | over | string literal
17 +0x20 | 6C 61 70 70 | | lapp |
18 +0x24 | 65 64 20 6E | | ed n |
19 +0x28 | 61 6D 65 | | ame |
20 +0x2B | 00 | char | 0x00 (0) | string terminator
Listing 19: An annotated FlatBuffers message which contains overlapped attributes.
The overlapping encoding inside the tables VTable is marked orange and the over-
lapped data blue. Notice how the address of the overlapped data (+0x14) is the same.

The servers and client are then run using the monitoring tooling discussed in Sec-
tion 5.2.2.

5.2.2 Attack Impact Measurement

To determine the impact of each attack, targeted applications resource usage had to
be closely monitored. Fortunately, the evaluation environment (see Section 5.2) runs
on GNU/Linux which offers advanced capabilities to monitor a process’s resource con-
sumption and execution environment. One of these capabilities is the Control-Group
(CGroup) system. They are a system of the Linux kernel that allows allocation, track-

35

ing and limiting of resources such as CPU time, memory, I/O bandwidth, device access
or network traffic control for a collection of processes. They are for useful day to day
server operations as well as security research as they can provide detailed resource
management and isolation capabilities.

CGroups also play a crucial role in containerization technologies like Docker, LXC
(Linux Containers), and Kubernetes. By using CGroups in conjunction with kernel
namespacing features, processes are effectively isolated not just in terms of resources
but also in terms of visibility and access to kernel objects. This isolation mitigates the
risk of resource exhaustion attacks and improves overall system security.

CGroups are an abstract capability of the kernel and need a specific CGroup manager
to actually use them. They also come in two flavors, V1 and V2. Most modern systems
use SystemD as a manager with the CGroup v2 API. With SystemD, the concept of
Units is used to manage CGroups as each unit can be associated with its own CGroup
in the CGroup hierarchy. Units (and therefore CGroups) may be defined statically or
created and modified at runtime (SystemD calls these transient units). For example,
the CLI systemd-run can be used to run a command under a new transient CGroup
similar to how sudo is used to run a command as root.

To measure the impact of attacks on application servers that use FlatBuffers as their
message format CGroups are extensively used. The reason for using CGroups instead
of just using per-process accounting features of the Linux kernel is that an application
server may spawn an arbitrary number of worker processes and otherwise behave quite
unpredictable in terms of its process management. A measurement tool would therefore
be required to walk, measure and collate the whole process tree of a system under
test. CGroups however do that automatically which means that the tool only needs to
gather statistics about one kernel object which radically simplifies it.

The tool itself is implemented in Python and can be accessed as part of this thesis’s
accompanying source code. It is written in the Python programming language and
spawns a given command-line as a subprocess using systemd-run with the right collec-
tion of arguments. systemd-run’s output is then evaluated to find the correct CGroup
of the spawned process and while that process is running, the CGroups resource usage
is recorded regularly and written to a user-specified log file in JSON. Standard output
and standard error of the invoked program are also captured, written to a log file while
and additionally copied to the instrumentation script’s standard output. The tool cap-
tures the contents of the following files inside the CGroups sysfs directory
• cgroup.procs for the list of process IDs that are active in the CGroup,
• cgroup.threads for the list of thread IDs that are active in the CGroup,
• memory.current which contains the currently amount of bytes allocated to processes

in the CGroup,
• cpu.stat for CPU time accounting as well as
• memory.stat and pids.current which turned out to not be needed and were not used.

An example invocation is given in Listing 20 where echo Hello World is run and instru-
mented. The program outputs which CGroup it uses for instrumentation (indicating

36

that invoking systemd-run and parsing its output was successful) and then prints “Hello
World” to the terminal. At the same time, the file stats.json is filled with one entry
(because echo Hello World is a very quick-to-finish program) that shows some data
about the invoked program while the file log.txt is filled with the command’s output
(“Hello World”). In this example, only one process was active in the CGroup which
used 1500 microseconds of CPU time and allocated 360.448 bytes of memory.

1 # invocation
2 ./run_instrumented.py \
3 ./stats.json \
4 ./log.txt \
5 echo Hello World

1 // stats.json
2 [
3 {
4 "time": 1721081848.269017,
5 "memory.current": 360448,
6 "pids.current": 1,
7 "cpu.stat": {
8 "usage_usec": 1500,
9 },

10 },
11]

1 # log.txt
2 using cgroup … for instrumentation
3 Hello World

Listing 20: An example invocation of the run_instrumented.py script with abbreviated
output

5.2.3 Language Comparison Results

As shown before, flatc implements support for many programming languages, however
one of the obvious results is that indeed not all programming languages are supported
equally well. The next sections discuss the results for each of the evaluated languages
while also starting with some general remarks.

5.2.3.1 General Shortcomings

The official FlatBuffers website lists in its language comparison chart only the languages
C++ and C to even have a buffer validator[32]. This was found to be incorrect in that
Rust can also validate buffers before processing them further. C# also has validation
logic defined in its source code6 but does not explain or mention how it can be used in
any of the documentation material. The documentation is therefore obviously outdated.

6https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs

An interesting detail is that the Rust language’s implementation is the only one which
enforces usage of its validation logic or even mentions the need for validation (and how
to use it) clearly in its documentation. For the other languages in which a validator is
implemented (C++ and C#), the main tutorial site does not mention it at all[33]. Only
the advanced documentation page that is “designed to cover the nuances of FlatBuffers
usage, specific to C++” [34] has any mention of accessing untrusted buffers and using
a validator. It even steers you back towards the main tutorial in its first paragraph
which supposedly “has a complete guide to general FlatBuffers usage” [34]. That main
tutorial then explains: “assuming you have a buffer of bytes received from disk, net-

37

https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs
https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs
https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs
https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs
https://github.com/google/flatbuffers/blob/master/net/FlatBuffers/FlatBufferVerify.cs

work, etc., you can start accessing the buffer like so” [33] while showing the content
of Listing 21. The documentation fails to mention any risks associated with using an
untrusted FlatBuffers that way. Quite the opposite, it tells the reader that this is how
they should deal with FlatBuffers that were received from the network.

1 uint8_t *buffer_pointer = /* the data you just read */;
2
3 // Get a pointer to the root object inside the buffer.
4 auto monster = GetMonster(buffer_pointer);

Listing 21: How to interpret a buffer as a FlatBuffers defined Monster object[1]

FlatBuffers implementations also heavily rely on external knowledge about the size of
the buffer for much of their validation logic. In languages like C++, which operates
on raw pointers, this is especially apparent. Other languages’ implementations often
use special Buffer types which carry a size information with it. When transmitting
FlatBuffers messages, this size information is by default not transferred, so a program-
mer needs to ensure that a message’s size is also transmitted so as to not falsify val-
idation results. This can be enabled by using a size-prefixed encoding which flatc im-
plements code generators for but must be manually done. This is also not mentioned
in the documentation.

5.2.3.2 C++

The C++ languages FlatBuffers implementation can generally be considered one of
the more mature ones. The FlatBuffers documentation as well as the experiments con-
ducted here show as much.

The flatc authors supply a validator for C++ which is able to validate FlatBuffers
messages and find most format errors. It also verifies that no offsets stored in the
message point outside it so that the calling code does not unintentionally produce out-
of-bound accesses. The same is true for vector elements that are arithmetically located
outside the buffer. These out-of-bound checks however only produce accurate results
when the validator is given the correct message size. The code shown in Listing 22
would thus produce incorrect results as the validator would have to be constructed with
n as the length parameter instead of 4096. Using an incorrect value makes it possible
to manipulate user code into accessing any value between the start of the buffer and
(in this case) 4096 bytes further.

On a technical note, the C++ implementation uses pointer arithmetics whenever any
part of a FlatBuffers encoded message is accessed. Pointer arithmetics can be used
to efficiently access memory by treating memory addresses as numbers and perform
calculations on them. This can lead to more efficient algorithms but the resulting new
addresses must always be treated with great care to ensure they still refer to valid
memory areas. flatc’s C++ implementation was found to arithmetically combine a
messages base address with offsets contained therein. Only if validation is enabled, are
those offsets verified to ways refer to other areas inside the message. If validation is

38

disabled, an application using FlatBuffers can trivially be manipulated to read from
(and depending on the application, also write to) arbitrary locations in the programs
memory. This can lead to secrets being leaked, the application crashing (e.g. through
a null-pointer dereference) or cause undefined behavior7.

7https://en.cppreference.com/w/cpp/language/ub

At the same time, the usage of this validator is entirely optional. In the normal data-
access code-path, flatc basically only does pointer arithmetics without any bounds or
alignment checks. If a user processes untrusted FlatBuffers messages, they must re-
member to use a validator as otherwise, an attacker can construct reads into almost
arbitrary memory regions. This includes invalid ones such as 0x0 which crashes the
program.

What Listing 22 also shows is the construction of the Verifier::Options struct with
default values. Those default values are shown in Listing 23. They are chosen to “be
sufficient for most uses” [34] which is true, but the rather large defaults leave a user
vulnerable to potential DAG-Explosion attacks. Exactly how vulnerable, is discussed
in Section 5.3.

It should also be noted that the validator only returns a simple valid or not valid re-
sponse without any further details about what exactly is wrong with the buffer. This
might not be a security concern, but it certainly makes debugging invalid buffers harder.

1 char buffer[4096];
2 n = read(socket, buffer, 4096);
3 auto opts = flatbuffers::Verifier::Options{};
4 auto verifier = flatbuffers::Verifier(buffer, 4096, opts);

Listing 22: An insecure way of constructing the FlatBuffers validator

1 struct Options {
2 // The maximum nesting of tables and
3 // vectors before we call it invalid.
4 uoffset_t max_depth = 64;
5 // The maximum number of tables we will
6 // verify before we call it invalid.
7 uoffset_t max_tables = 1000000;
8 // If true, verify all data is aligned.
9 bool check_alignment = true;
10 // If true, run verifier on nested flatbuffers
11 bool check_nested_flatbuffers = true;
12 // The maximum size of a buffer.
13 size_t max_size = std::numeric_limits<int32_t>::max();
14 // Use assertions to check for errors.
15 bool assert = false;
16 };

Listing 23: Definition of the default validator options

39

https://en.cppreference.com/w/cpp/language/ub

Data overlap attacks are not detected by the validator at all.

While the validator checks whether string data is null-terminated, it does not verify the
content to be valid UTF-8. This is not required in C++ itself since its string data types
are just thin wrappers around raw bytes, but it does have an impact for downstream
usages. For example, when a received string is logged without care being taken about
its encoding, the string being invalid may corrupt the whole log file, since it can’t be
decoded or processed any further. This is an easy pitfall to fall victim to, as the code
in Listing 24 demonstrates. Additional problems arise downstream if the string data
is sent further along to other systems that either depend on the data being already
verified and valid or just assume that strings are always valid UTF-8.

1 void foo(SelfTable *root) {
2 if (root->name() != nullptr){
3 printf("Got name %s\n", root->name()->c_str());
4 }
5 }

Listing 24: Logging of a received string that lacks steps to escape potential invalid
UTF-8

5.2.3.3 C#

The C# language FlatBuffers implementation comes with a validator similar to the
one seen in C++. It is however not documented in the guides published by the flatc
authors. It must also be manually run before interacting with a FlatBuffers message,
as the normal data access path does not perform much validation automatically. The
validation options are shown in Listing 25. They have the same default values as the
ones for C++ from Listing 23. The same considerations regarding DAG-Explosion at-
tacks and validator effectiveness as for C++ apply.

40

1 public class Options {
2 public Options(
3 int maxDepth,
4 int maxTables,
5 bool stringEndCheck,
6 bool alignmentCheck) {
7 …
8 }
9
10 public Options() {
11 max_depth = 64;
12 max_tables = 1000000;
13 string_end_check = true;
14 alignment_check = true;
15 }
16
17 …
18 }

Listing 25: The signatures of the C# validator options constructors

Out-of-bounds accesses (from invalid offsets or from an incorrectly sized vector) are
still not possible even if no validator is used, because all buffer accesses are wrapped
in a specialized ByteBuffer class which detects out-of-bounds accesses and throws
System.ArgumentOutOfRangeException accordingly. These checks can be disabled by
conditional compilation of the flatc library. Some additional performance optimizations
that require memory-unsafe code can also be enabled via the same mechanism. Even
so, the defaults are chosen to be secure rather than fast.

In terms of string handling, the C# implementation does a good job by offering differ-
ent kinds of accessors. On one hand, a user can get the raw bytes that are supposed to
make up a string if needed but the default accessor properly decodes and validates the
underlying data as UTF-8. Invalid data is properly replaced with the UTF-8 replace-
ment character (�).

Data overlaps are not detected at all.

5.2.3.4 Go

The flatc support for the Go programming language exists but is lacking in multiple
regards.

To start with, it does not provide any support for validating untrusted messages, so
a wide range of exploits is possible. This includes DAG-Explosion attacks, attacks in-
volving out-of-bounds offsets, string manipulations and attribute overlaps.

In detail, supplying a FlatBuffers message with invalid offsets results in the current go-
routine8 panicking at runtime with the message “panic: runtime error: slice bounds

8A lightweight execution context that is used instead of threads in Go

41

out of range […:…]”. The same behavior is observed when a vector’s length is longer
than the whole message and the vector elements outside of it are accessed. This is
because the Go implementation uses a []byte instead of raw pointers internally and
Go’s arrays always include out-of-bounds checks. To reiterate, a go-routine panic occurs
every time an offset is invalid, which includes the root offset which is always contained
in the very first 4 bytes of a message. An attacker thus does not need any knowledge
about the message schema because they can construct an invalid message with just
these 4 bytes.

The string handling is not much better. Encoding errors as well as missing null-termi-
nators are silently ignored by the implementation and a string is always returned to
the user. Go’s string types are thin wrappers around []byte so this is technically fine
but can result in issues on downstream applications as discussed in the C++ evaluation.

5.2.3.5 Java

The Java implementation is also very minimal when compared to e.g. C++. It does
not ship with an explicit validator, but due to the way that Java is designed and built,
its behavior is slightly less catastrophic. The reason for this lies in better error han-
dling: Instead of panicking the current thread, a number of exceptions is thrown, and
error conditions can thus be recovered from much easier. Unfortunately, all of them are
unchecked exceptions9 and none are documented in the function signatures generated
by flatc or mentioned in any documentation material.

9https://www.baeldung.com/java-checked-unchecked-exceptions#unchecked

In detail: If a server written in Java is supplied with any sort of invalid offset (In-
validForwardOffset, InvalidBackwardOffset and InvalidRootOffset), this results in a
java.lang.IndexOutOfBoundsException being thrown when the corresponding data is
accessed. The same behavior occurs when accessing vector elements whose calculated
position lies outside of the buffer (as is the case for InvalidVecLength attacks).

String length attacks that result in strings missing their required null-terminator are
silently ignored and the implementation simply returns the shorter string as if there
was nothing wrong with it. Incorrectly encoded UTF-8 strings on the other hand
raise java.lang.IllegalArgumentException indicating the “Invalid UTF-8” of the string
data.

The lack of validation also leaves the Java implementation completely open to DAG-
Explosion attacks of any size. For the same reasons, overlap attacks also not detected.

5.2.3.6 Python

The Python implementation also does not implement a validator. The functionality
provided by the implementation also strongly suggests that it was written with a spe-
cific usage pattern in mind. For example quality-of-life accessors are provided for using
numpy arrays to process FlatBuffer vectors but accessing the same data using standard
Python iterators, generators or lists is not supported. The flatc code generator also

42

https://www.baeldung.com/java-checked-unchecked-exceptions#unchecked

does not generate any documentation or type hints which makes it hard to reason
about what exactly a generated method does or which side effects it might have. This
of course includes the different exceptions raised during data access.

Supplying the Python server with buffers that contain invalid offsets (InvalidForward-
Offset, InvalidRootOffset) makes the flatc code throw struct.error exception when
accessing the corresponding data. It also the exception TypeError with the error “bad
number −84 for type uint32” when supplied with an invalid backwards offset. This
is due to the offset calculation being a signed operation that goes below zero while
the access into the buffer only supports unsigned or positive offsets. When the Python
server is supplied with vectors whose data is longer than the buffer (InvalidVecLength),
or when an element that would be located outside the buffer is accessed, the same
exception is thrown in both cases.

String length attacks are ignored silently by the implementation. It returns the short-
ened string while ignoring that a null-terminator is missing. The string handling in
the implementation can be considered inadequate because it does not handle strings as
such. Instead, string data is treated as byte vectors (which is what strings are encoded
as in FlatBuffers). Decoding is left to the user; the Python built-in bytes data type is
used to return these byte vectors as-is. This means that a user of FlatBuffers in Python
needs to decode the string themselves. While doing so leaves the flexibility of handling
decoding errors to the user, it might also lead to users blindly calling .decode('UTF-8')
on the bytes since they “know” that the data is a string. This of course leads to
UnicodeDecodeError exceptions being thrown.

Logically, the lack of validation in the implementation allows undetected DAG-explo-
sion attacks of any size as well as overlap attacks.

5.2.3.7 Rust

Rust has one of the more polished FlatBuffers implementations. It generally has good
error handling, protects the user against most kind of attacks and has a straight for-
ward API which is easy to use, has automatically generated docstrings and is easy to
understand. The only downside is that the documentation on the FlatBuffers website
seems to be severely outdated. For example it explicitly lists Rust as not having a
validator implemented despite its obvious presence.

Rust is also the only implementation where the validation logic is built into the main
accessor that is initially used when accessing the root object of a FlatBuffers. It also
provides functions which skip validation but they are explicitly marked as unsafe and
are delivered with instructions that describe under which circumstances their usage is
valid. The default options, which are shown in Listing 26, are generally similar to the
verifier options in other languages’ implementations. There is a difference though: In
Rust, an additional option for max_apparent_size is present which governs the max-
imum amount of bytes that a linearized arrangement of the buffers data graph are
allowed to be take up. No option regarding alignment checks is provided. Instead, align-
ment requirements are always validated. In contrast to other implementations that only

43

return a boolean value stating whether the buffer is completely valid, a detailed error
type is returned, allowing a programmer to debug where and why exactly an input
buffer is invalid (See Listing 27 for reference).

The implemented validator is rather effective, since it catches and protects against all
tested invalid offset attacks (InvalidForwardOffset, InvalidRootOffset and InvalidBack-
wardOffset). It also detects strings missing their null terminator (InvalidStringLength)
as well as incorrectly encoded strings (InvalidStringEncoding). Attacks which place
vector elements outside the buffer (InvalidVecLength) are also caught but overlapping
of different data is not (AttributeOverlap). The validator protects against DAG-Explo-
sions to a certain degree depending on the options it is configured with.

1 impl Default for VerifierOptions {
2 fn default() -> Self {
3 Self {
4 max_depth: 64,
5 max_tables: 1_000_000,
6 max_apparent_size: 1 << 31,
7 ignore_missing_null_terminator: false,
8 }
9 }
10 }
Listing 26: Default implementation for the VerifierOptions

1 Error: Could not interpret buffer
2
3 Caused by:
4 String in range [28, 57) is missing its null terminator.
5 while verifying table field `name` at position 20

Listing 27: An example error stack that is contained in the Rust validation error

5.2.3.8 TypeScript / JavaScript

The JavaScript/TypeScript implementation is simultaneously the one which performs
the least amount of validation but is in the same time also very stable and difficult to
exploit.

There is no validation specific to FlatBuffers messages performed by flatc and most
of the security stems from the languages built-in data types and its tendency to fail
softly instead of returning errors or throwing exceptions. For example, flatc implements
a wrapper called ByteBuffer for accessing the content of a Uint8Array that stores a
FlatBuffers encoded message. This wrapper provides utility methods for decoding parts
of the array as more complex data types like Int32. These utility methods along with
JavaScript’s tendency to coalesce data types result in invalid reads from the underlying
array being returned as 0 which in turn makes the FlatBuffers related code interpret
many things as being zero-sized or having their default value. So when an attack is

44

targeting a server written in TypeScript/JavaScript that utilizes invalid offsets (In-
validForwardOffset, InvalidRootOffset and InvalidBackwardOffset) the server is mostly
unaffected and interprets as having data having their default value.

When specifying vectors that are larger than the whole buffer (InvalidVecLength), the
same behavior manifests. So when elements placed outside the buffer are accessed,
flatc returns that element’s default value. This behavior is technically safe in that it
does not result in the program unexpectedly terminating or undocumented exceptions
being thrown but depending on what the server does with vector elements, it may be
manipulated into doing many calculations for elements that were fabricated this way.
For example, the algorithm implemented by the test server (see Listing 12) calculates
a sum over all elements of a vector. It can be tricked this way into calculating the sum
of up to 2147483647 (i32 maximum value) zeros. As Figure 7 shows, a considerable
amount of CPU time is exhausted this way. The marker on the figure indicates the
time at which the attack was started. We can see that from that point on, the server
used CPU-time in a 1-to-1 ratio to realtime (equaling 100% CPU usage on one core)
for about 17.5 seconds. The attacking client on the other hand only used about 10
milliseconds (not shown) and the attack payload was only 64 bytes large.

One detail to note is that JavaScript does not actually support unsigned integers. This
means that any time the FlatBuffers protocol specifies an unsigned integer to be used,
when that integer has its first bit set, JavaScript will instead interpret it as a negative
number. This behavior is not immediately exploitable because of the behavior described
in the previous paragraph but should still be protected against by validating numbers
to not be negative when an unsigned integer is expected, which flatc does not do.

The implemented string handling is similarly permissive. It correctly replaces invalid
UTF-8 bytes with the replacement character (�) (InvalidStringEncoding) and ignores
missing null terminators (InvalidStringLength).

Unfortunately, having no validator logic leaves the implementation completely vulner-
able to DAG-Explosion attacks as well as data overlaps.

45

Figure 7: A graph of the CPU time used by the TypeScript server when attacked with
an impossibly large vector.

5.2.3.9 Summary

The findings from the previous sections can best be summarized by saying that there
are clearly two classes in terms of quality of implementation. There are those languages
which have proper validation logic implemented (C++, C# and Rust) that provides
a decent degree of protection against untrusted inputs. Then there is the other class
of implementations, which are only partially protected because of the respective lan-
guage’s intrinsic properties (Go, Java, Python, TypeScript and JavaScript). Error han-
dling is also very basic if not completely absent in all languages except Rust and a wide
range of undocumented internal exceptions or complete program panics which are not
documented can often be provoked by external attackers. Documentation as a whole is
sometimes missing or outdated and often leaves out important details.

Table 2 lists the results of different experiments in a comprehensive table. All language
implementations are rated against all tested attacks to be either
• protected which is to say that it behaves in a predictable and clearly documented

manner when being presented with a malicious message or
• vulnerable meaning that the implementation crashes, throws undocumented excep-

tions or otherwise behaves in a way that is wide open to exploitation.
• mitigated for when the provided validation mechanisms are able to reduce the impact

of an attack but not completely negate it.

In this presentation of results, the split between the two classes of implementation
quality becomes clearly visible. It should be noted that TypeScript/JavaScript is an
outlier should not be considered secure despite avoiding most of the tested vulnerabil-
ities on first glance. For details see the specific section (Section 5.2.3.8).

46

C++ C# Go Java Python Rust TypScript/
JavaScript

DAG-
Explosion m¹ m¹ v v v m v

InvalidString-
Encoding p² v p² v v p p

InvalidString-
Length p¹ p¹ p² p² p² p p²

InvalidVec-
Length p¹ p¹ v v v p p²

Invalid-
ForwardOffset p¹ p¹ v v v p p²

InvalidBack-
wardOffset p¹ p¹ v v v p p²

Attribute-
Overlap v v v v v v v

Table 2: Comparison of the results for FlatBuffers implementations in different lan-
guages. Vulnerable implementations are marked v, protected ones p and the ones where

attack impact is mitigated with m.

¹: When using the optional validator
²: Not vulnerable itself but downstream consumers might be affected

5.3 DAG-Explosion DoS impact
Section 4.3.2 explains the possible attack vector of using FlatBuffers encoding features
in a way that makes a very small message contain a very large data tree. This sec-
tion details the results obtained found when executing such an attack against different
servers using the schema and algorithm described in Section 5.2. The results were col-
lected using the instrumentation tool introduced in Section 5.2.2 and include data for
languages that ship with a validator as well as ones that don’t. The following subsec-
tions each focus on a different property of the attacked server.

5.3.1 Memory Impact of Tree-Walk

In this experiment, the memory usage of the same algorithm implemented in different
programming languages (as described in Section 5.2.1) are evaluated. Here the focus
lies on the amount of program memory required to process FlatBuffers messages con-
taining DAG-Explosions.

47

The first experiment was performed with a DAG tree depth of 7 and a vector length
at each level of also 7. This was determined to be the parameter combination which
produces the largest DAG-Explosion but still passes flatc buffer validation with default
parameters. Figure 9 shows the amount of memory needed by the different implemen-
tations for processing one such FlatBuffers message. The upper plot displays how much
memory was allocated to the process in total during its runtime while the lower plot
shows the applications memory usage over time. It is centered with 𝑥 = 0 around the
point in time at which the malicious message was sent to the applications.

The implementations in C++ (hidden almost underneath Rust in the plot), Rust and
Go all have a very small runtime overhead when idling, which is reflected in the plot.
Upon receiving the FlatBuffers message, no relevant amount of additional memory is
required to process it, which is unsurprising considering that the data accessors pro-
vided by flatc in these languages are all thin wrappers around byte slices, or pointers
respectively. The implemented algorithm is also simple enough so that all those lan-
guages’ implementations are able to use stack-frame memory only, which results in
the allocated data accessor objects to be freed as soon as they are no longer needed
without having to wait for garbage collection10. The Python implementation also falls

10Yes, even in Go, the garbage collector is bypassed in certain situations: https://go.dev/doc/faq#
stack_or_heap

in this category as even though Python has a larger general runtime overhead, flatc
uses numpy in its implementation so that the user receives only stack allocated and
reference counted data structures that don’t require garbage collection. This is also
visible in the plot as the Python server consumes only a negligible amount of additional
memory for processing the message.

In opposition to the language implementations discussed before, the implementations
in Java, TypeScript/JavaScript and C# can all be seen allocating additional memory
for walking the received data-tree. While the C# implementation does not require sig-
nificant amounts, the Java and TypeScript/JavaScript implementations can be seen to
allocate more than double their initial runtime overhead just for processing one single
message. In the case of Java, the message is even processed faster than the garbage
collector is able to free memory that is no longer used.

To evaluate further how much memory usage an implementation will peak at, another
experiment was conducted using a DAG-Explosion message of depth 12 and vector
length 12 while capping the experiment duration at 5 minutes. That time limit was
chosen to provide enough data to evaluate the implementations memory usage as none
was able to completely process the buffer inside this time frame. Figure 9 shows the
relevant time span of this experiment. Java is by far the worst performer with allocat-
ing 190 MBytes before its garbage collector is able to catch up by cleaning up unused
objects. TypeScript/JavaScript memory requirements cap much earlier at around 55
MBytes. Nevertheless, when considering that the attack payloads are only one to two
KB large, this is an absurd amount of memory to process it.

48

https://go.dev/doc/faq#stack_or_heap
https://go.dev/doc/faq#stack_or_heap

It is possible that the garbage collected languages might behave differently when the
system is under memory pressure and collect garbage more aggressively, but these con-
ditions should not be considered favorable, as more processing time would be spent
collecting garbage. Additionally, some systems, e.g. Linux, don’t behave optimally un-
der high memory pressure or decide to kill the processes responsible for using too much
memory. As demonstrated by the experiments, it would be trivial to cause such memory
pressure conditions, as the memory requirements shown here apply to the processing
of a single request, while a truly malicious actor can easily send many such messages,
each requiring memory for processing. Another aspect to consider is that the measure-
ment tool is not able to deeply inspect programming languages whose runtime include
a virtual machine (e.g. Java). Those VMs may allocate memory from the operating
system while internally not always having all their allocated memory in use.

In summary, DAG-Explosions can be effective in cause a system-under-attack to allo-
cate significant amounts of memory just for processing the message itself. Exactly how
much and whether that is a security risk depends on which system is under attack.

49

Figure 8: Memory used by different servers when encountering a DAG-Explosion of
depth 7 and vector length 7

50

Figure 9: Maximum amount of memory ever used, limited by garbage collection

5.3.2 CPU Impact of Tree-Walk

This experiment uses the same setup as described in Section 5.2.1, but it focuses on the
CPU usage observed by each programming language’s implementation when encoun-
tering DAG-Explosion payloads.

For this purpose, two types of experiments were conducted:

• Experiment A: Different payloads which all pass the flatc validation when it is
instantiated with default options were generated and evaluated for their effectiveness
on servers implemented in different programming languages.

The largest payload which was still able to pass validation used a depth of 7 and
vector length of 7. The results from that experiment are shown in Table 3 on a

51

logarithmic scale. The figure plots how much a language’s server took in real time
on the X-Axis against how much CPU time was used by that computation on the
Y-Axis. Markers on this plot tend towards the 45° line as that indicates 100% CPU
utilization. If a process is below that line, it does not utilize the CPU to its full
potential, probably due to waiting on external factors like I/O while being placed
above the line is only possible if the server uses multi-threading which uses more
than one CPU core at a time.

As expected, the compiled languages C++ and Go are very fast in processing the
message compared to the others. In fact, they are so fast that they process the
request faster than the instrumentation tooling takes measurements, so their CPU
utilization between the start and end of the measurement interval - and thus in the
plot - is reported lower than it actually is for the request processing time. What
is evident is that the C++ and Go implementations processed the requests in less
than 40 milliseconds. It should be noted though that since it is not possible to do
validation in Go, a much bigger payload can still cause the Go implementation to
require a lot of CPU time (see experiment B).

The next cluster of languages includes Rust, TypeScript/JavaScript, Java and C#.
These process the message in less than 0.5 seconds, which might already be consid-
ered to be inside an exploitable range depending on the specifics of the application
and attack scenario. Python is the definitive outlier in this experiment as it required
8.1 seconds to walk the tree of message data.

The reason Rust is not as fast as C++ or Go is that the implementation in Rust does
more validation. After validating the whole message using the dedicated validation
algorithm, it also does out-of-bound checks on every field access, which is due to
how Rust works internally. C++ does not perform an out-of-bounds check on each
access and Go does not perform the initial validation. This explains why the Rust
implementation is half as fast as the other two, considering it does twice as much
validation.

• Experiment B: An extremely large DAG-Explosion payload was sent to servers
which don’t use a validator with the goal of gauging the efficiency with which they
are able to utilize the available CPU resources. The payload consisted of a depth of
12 as well as a vector length of 12.

The results of this experiment are shown in Table 3. All implementations utilize the
system’s CPU nearly fully or in the case TypeScript/JavaScript even with a slight
overhead. This result is expected since accessing parts of a FlatBuffers message is
not I/O-bound and the flatc library does not need to call into any external systems
to e.g. acquire additional resources.

52

Figure 10: A system’s CPU time compared against real time for walking the data tree
of a DAG-Explosion payload with depth 7 and vector length 7

Language CPU Utilization
TypeScript/JavaScript 102%

Java 99%
Go 99%

Python 99%

Table 3: CPU utilization efficiency of implementations in different programming lan-
guages during long running operations

In summary, DAG-Explosion attacks are capable of exhausting a systems CPU re-
sources with very small payloads very effectively. An attacker only requires one payload
per CPU core as the processing of FlatBuffers messages is happening at (near) 100%
CPU utilization. The processing speed and thus the effectiveness of the attack varies
largely between server implementation language but most languages can be considered
vulnerable when taking in to consideration that an attacker needs to generate attack
payloads only once and can then send them at line-speed of the transport layer.

53

5.3.3 Memory Impact of Linearization

This experiment was designed to precisely evaluate the behavior of a system which lin-
earizes a FlatBuffer message when it encounters a DAG-Explosion payload. The term
linearization in this context refers to the act of unpacking all references and storing
them inline to where they are referenced.

The experiment was set up using a TCP server that receives a FlatBuffers message
in the schema shown in Listing 11. This server then parses and converts the received
FlatBuffers message to JSON. JSON was chosen as a conversion format because it is
commonly used e.g. when servers log incoming requests using structured-logging. The
specific choice of data interchange format has only minimal bearing on the outcome
of the evaluation. The generated JSON is not actually logged anywhere but kept in
memory for a small amount of time to give the instrumentation tool a chance to track
memory usage. The final size of the JSON data is logged to allow evaluation of the size
increase from initial FlatBuffers message to JSON equivalent. The conversion itself is
done by writing the buffer to a file and calling the flatc tool which has JSON conversion
built-in in a subprocess. Afterwards the JSON file generated this way is read back into
the server. This was necessary because of a bug in the flatc code generator that surfaced
when it was asked to generated Serialize/Deserialize implementations for a schema.

The described server was then presented with different FlatBuffers messages that con-
tained DAG-Explosions of different depths and sizes (see Section 5.2.1). The experi-
ments were all successful in generating a much larger linearized representation than
the original buffer and only differed in the exact measurements. For brevity, only two
experiment arrangements are explained here in detail:
• Arrangement A: DAG-Explosion with depth 7 and vector length 7 which is

the largest payload that still passed validation when using default validator options.
• Arrangement B: DAG-Explosion with depth 8 and vector length 8 which was

the largest possible experiment as others required more than the 32GB of system
memory available for the experiment.

Running the experiment resulted in the following data:

• Arrangement A: The attack was very successful. The generated payload was only
1072 bytes large as a FlatBuffers but resulted in a roughly 775.91MB large JSON-
string when converted. Using the exact sizes, the JSON-string is larger by a factor
of 723, 801.
The conversion itself required even more resources as can be seen in Figure 11. It
needed 1.51GB of memory at its peak as well as 9.36 seconds of CPU-time.

• Arrangement B: This attack generated a payload 1240 bytes in size but exploded
to a JSON-string that required 16.74GB to be stored. The scale-up in this case is
a factor of 13, 498, 534. As with the a setup, the conversion process required more
resources than just storing the result itself which is also shown in Figure 11. This
time, 29.59GB were used in 139.94 seconds of CPU time and 262.14 seconds real
time.

54

Both results have in common that CPU utilization drops drastically at a certain point
in the experiment. The reason this happens is that the flatc tool is instructed to write
its JSON result into a file and the kernel’s I/O write-cache is eventually filled up by
the large data. flatc then needs to wait for file write operations to be committed to
disk which is considered I/O-wait and not counted towards CPU-time.

Another shared result is that the total amount of memory required is in the magnitude
of being double the resulting JSON-string. It is likely that multiple copies of the same
data are held at different positions in memory, presumably once in userspace (flatc and
the experiment server) and once in kernelspace where it was copied for I/O operations.

As a side-note, flatc itself does not seem to run any validation logic or at least disables
checks regarding maximum buffer sizes and restrictions regarding the amount of tables
allowed in a FlatBuffers message. Otherwise, the b experiment would not have been
possible because it produces more data than those checks allow with their respective
default settings.

In summary, the results prove that DAG-Explosion attacks are very much a threat
to applications that blindly accept untrusted input messages and convert them
into another data format which breaks the reference-heavy compression dynamics of
FlatBuffers. The required memory for such a conversion is very much exponential when
related to the attacking payload size, which makes attacks against such servers ex-
tremely effective. This attack works against applications that perform no validation
as well as those which use the built-in flatc validator with its default options. Even
with application specific validation options, the underlying problem still remains and
its effects can only be minimized, not completely averted.

55

Figure 11: Resource usage when a DAG-Explosion of depth 7 and vector length 7 (a)
and 8/8 (b) is converted to JSON

56

6 Discussion
The discussion section aims to summarize the evaluation results and provide an analy-
sis of the implications and effectiveness of the methods and attacks discussed in this
thesis. Afterwards, the relevance to real-world systems as well as broader system design
implications including improvement suggestions are presented in Section 6.2.

Generally speaking, the research questions presented in Section 3.2 can be answered
like this:
1. Under which circumstances can what attacks be successfully executed?

Using FlatBuffers often requires knowledge about a targets message schema to suc-
cessfully craft exploits such as DAG-Explosions. In other cases though, a system is
vulnerable to attacks regardless of the used schema (e.g. Go with InvalidRootOffset).

2. What impact does which attack have on the system-under-attack?
Different attacks were shown to have a wide range of impacts (see Table 4 for de-
tails) that highly depend on the configuration of the system-under-attack. Those
can range from causing no harm to completely crashing a target application.

3. What is the relation between resource requirement on the attacker’s side
as compared to the effects on the system-under-attack?
Factoring out the often required initial effort of determining a targets message
schema, all examined attacks can trivially be constructed and require neither any
noteworthy amount of CPU-time nor memory.

4. Which relevance do the findings of this thesis have to real-world applica-
tions?
Every examined attack was demonstrated to be practicable. A number of source-
available application schemas from GitHub were also examined and determined to be
risking DAG-Explosion attacks. This includes high-profile data processing libraries
such as tflite and Apache-Arrow of which only the latter implements appropriate
defensive precautions.

6.1 Vulnerabilities
The performed examinations and experiments have demonstrated significant security
risks associated with handling untrusted FlatBuffers encoded messages. The findings of
this thesis align with and extend existing research on the vulnerabilities of serialization
protocols. The literature reviewed in Section 3.1 consistently emphasized the criticality
of proper validation and input handling, which this thesis further proves. One notable
advance is the focus on protocol-level attacks inherent to the design of the FlatBuffers
encoding format, such as DAG-Explosion attacks. These types of attacks expand the
awareness of how serialization formats can be exploited beyond simplistic sanity-checks
and highlight the importance of robust validation routines and application-level safe-
guards.

The ability for malicious actors to craft such DAG-Explosion attacks which exponen-
tially increase in complexity during traversal or linearization poses a significant DoS
risk. While creating them requires knowledge about a system’s FlatBuffers schema,

57

those schemas are often known and reverse engineering such a schema was also shown
to be possible. This type of attack is especially dangerous for systems that perform
deep recursive data processing or convert the message into a different format. The ex-
ponential memory allocation (up to ~30GB) and CPU utilization (100% for extended
periods) for a relatively small payload of only one to two kilobytes indicate that these
vulnerabilities can lead to severe service disruptions with minimal attacker resources.

Furthermore, the implementations in different languages show great variance in their
quality and provided security assurances. In some of these implementations, flatc does
not provide a validator, which means the user cannot perform message validation or
has to do so manually on their own. These can be trivially exploited and be made to
crash or otherwise fail unexpectedly. Doing so often requires no further knowledge on
the attacker’s side, as only 4 bytes of buffer can be enough regardless of the system’s
schema.

The handling of string data is also inconsistent between all implementations. Because
the FlatBuffers specification states that strings must be encoded as UTF-8, some lan-
guage’s implementations blindly expect them to always be valid UTF-8 while others
don’t enforce this, which naturally leads to incompatibilities. In some cases, flatc sim-
ply ignores those encoding errors, in other cases, accessing the data causes the system
to crash while only a few implementations perform the ideal handling with symbol
replacement. All but the latter can have impacts on the system itself and others inter-
acting with it.

The FlatBuffers protocol’s reliance on offsets rather than inline data makes it also ex-
tremely susceptible to data overlap attacks in many different ways. Those can lead to a
single byte sequence being interpreted as different types. The experiments showed that
such constructions work and are not effectively handled by any implementation. Related
work suggests that this might be explicitly out-of-scope of the implemented validator.
In any case, the possibility of such an attack makes it completely and absolutely unsafe
to ever modify FlatBuffers data in place when there is the slightest possibility that
the buffer comes from an untrusted source. Nonetheless, the flatc command-line tool
includes the option --gen-mutable to “Generate accessors that can mutate buffers in-
place” without even so much as a warning about the risks associated with this.

These risks and vulnerabilities are not merely theoretical. The experiments conducted
demonstrate that the risks are real and affect real-world applications. This argument is
strengthened by the analysis of freely available FlatBuffers schemas on GitHub which
show signs of being vulnerable to a wide range of attacks. For example, the tflite-micro
project which is actually authored by the same company as flatc (Google) was not
found to use any validation for its FlatBuffers based model files.

Different attacks have been presented, all of which impact a target system in different
ways. Table 4 contains a detailed overview about the kinds of impacts a user can expect
when using FlatBuffers in different environments and configurations. The following
fault categories are examined:

58

• Access Violation: An attacker can cause a receiving system to access arbitrary
memory regions.

• Memory Load: An attacker can cause a system-under-attack to allocate large
amounts of program memory, even exhausting all available resources. Naturally, any
processing of requests induces some memory load, despite that, a configuration ex-
hibiting this behavior uses more memory than is normally expected for processing
a singular request.

• CPU Load: An attacker can cause a system-under-attack to perform large amounts
of processing on the CPU thus preventing other programs from utilizing it. Similarly
to the Memory Load category, any request processing is expected to use CPU time
during request processing, however, this category indicates that an implementation
can be made to use more than an acceptable amount.

• Program Crash: An attacker can cause an irrecoverable fault which completely
stops the target system.

• Thread Panic: An attacker can cause the thread which processes the received
message to panic.

• Exception: An attacker can induce an (undocumented) exception to be thrown.
• Undefined Behavior: An attacker can manipulate the target system into a state

where further computation results are not clearly defined. Note that this is not a
categorization where the effects of an attack could not be determined but instead,
the attacked system can be made to perform operations that violate the rules of its
execution environment¹¹.

¹¹See https://doc.rust-lang.org/reference/behavior-considered-undefined.html or https://doc.rust-
lang.org/reference/behavior-considered-undefined.html

The programming languages and configurations displayed in Table 4 have been classi-
fied to either manifest these faults fully, partially (e.g. when a validator can be used for
mitigation) or not at all. Evidently, the Rust language’s implementation is unsurpassed
by any other.

59

https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html

C++ C# Go Java Python Rust TS/JS
Validator on off on off n/a n/a n/a on off n/a

Access
Violation no yes no no no no no no no no

Memory Load no no semi yes no yes no no no yes
CPU Load no yes semi yes yes yes yes no yes yes
Program
Crash no yes no no no no no no no no

Thread Panic n/a n/a n/a n/a yes n/a n/a no yes n/a
Exception no no yes yes n/a yes yes n/a n/a yes
Undefined
Behavior yes yes no no no no no no yes no

Table 4: Comparison between the behaviors that different implementations may ex-
hibit when attacked. Different system setups are categorized into whether they exhibit
certain undesirable behaviors (yes), whether they don’t (no), or only partially exhibit
it (semi). If a categorization does not apply, it is marked as n/a. The default or rec-

ommended validation is marked in purple.

6.2 Improvement Suggestions
Given the severity of the vulnerabilities and practices discovered while analyzing dif-
ferent application’s usages of FlatBuffers, several recommendations can be derived:

• Enforce Validation: Any application using FlatBuffers, if it is written in C++,
should mandatorily utilize the provided validation routines. The validation settings
(e.g. max_table and max_depth) should be tightened based on specific application
contexts to reduce and mitigate the impact of DoS-attacks. In most if not all cases,
there are no downsides to using the validator since there is no large performance
cost in running it and the security gained through it protects against a large range
of attacks. As a consumer of flatc, changing its API is not possible. In that case,
linting rules could be introduced to warn when an unverified buffer is used.

• Improve flatc API Design: As emphasized in Section 3.1.5, secure defaults and
API design decisions are important in enabling users to build secure applications.
Documentation and APIs should make using them securely the path of least resis-
tance for developers. This would however require the flatc authors to break their
existing API so that using the validator becomes the default while not using it is
converted to an explicitly unsafe operation, like they have done with the Rust API.
Of course, every programming language supported by flatc would need to have a
validator implemented in the first place, which should be considered crucial func-
tionality.

60

The default validator options, especially those concerning the amount of data con-
tained in a FlatBuffers message, would also profit from refinement work. Currently,
the flatc authors err on the side of producing software that just works in as many
scenarios as possible, but the chosen default size limits may already present a DoS
surface. The technique used by Apache Arrow in which a FlatBuffers size limiting
validator options are related to the size of the encoded buffer should be incorporated
into flatc. That way, large messages are still permitted as long as they actually con-
tain relevant data while exponential DAG-expansion is not.

• Update and Improve Documentation: Comprehensive and up-to-date docu-
mentation is critical. It is negligent to only mention security topics like validation
in the advanced language-specific topics. Instead, the prominent examples shown in
the flatc tutorial should, if not always show then at least explicitly mention buffer
validation and handling of untrusted input.

The documentation included in the code generated by flatc for a target language
should also be improved to at least include inline docstrings. These docstrings should
explain what a function does, explain under what conditions it is safe to use and
in which ways it fails when those conditions are unmet (e.g. throwing an exception
vs. returning null). The typing information of the generated code should also be
updated to include that information whenever possible.

• Memory and CPU Usage Monitoring and Limiting: Systems should gener-
ally incorporate robust monitoring and possibly circuit breakers to detect and halt
abnormal resource usage patterns indicative of attacks. All container-based deploy-
ment tools support assigning of resource limits to their workloads. While this does
not eliminate the underlying problems, it can mitigate the risks associated with
them and is generally considered good practice.

• Careful Downstream Usage: FlatBuffers should only very carefully be reused
and sent to other (downstream) applications. Section 5.2 illustrates that differ-
ent languages and systems behave differently when encountering certain malicious
FlatBuffers. Just because one system can process a buffer, another system written
in a different programming language or doing different things with it might still
crash or behave unexpectedly. If data must be passed onward, one should consider
re-encoding it so that it is structured in a known way.

It should also always be avoided to mutate FlatBuffers data in-place. Through dif-
ferent kinds of data overlap attacks, this can cause almost arbitrary mutation of
other bytes in a buffer as a side effect. A previously cautiously verified buffer can
become invalid and cause many unexpected issues.

In summary, while the FlatBuffers encoding format provides benefits in terms of en-
coding and access speed, it should always be used carefully and with an understanding
of the impacts certain access patterns have on an application’s attack surface.

61

7 Limitations and Future Work
The research shown in this thesis provides valuable insights, however there are limita-
tions worth acknowledging.

The evaluation focused on selected common programming languages. Further research
could expand this to other languages and alternative implementations like flatcc. The
existing experiments could also be further differentiated and subdivided. For instance,
examining the effects of turning off the validator in languages where it is implemented
would yield additional data. Different allocator implementations (e.g. running Type-
Script/JavaScript with bun’s --smol flag) could also be included in further experiments.
These additional experiments are not expected to produce radically different results
but would be interesting for painting a complete picture.

Regarding a complete picture, experiments that test different implementations using
incorrectly aligned data or technically invalid enum values were also not performed.
Unaligned data is expected to be caught by validation while the FlatBuffers documen-
tation strongly suggests invalid enum values to not be detected. Nonetheless, the be-
havior of applications encountering these issues would be interesting to know. Another,
very specific way of triggering out-of-bounds data access is to construct a vector whose
vector_len * size_per_element calculation overflows. This might fool a validator into
treating a buffer as valid while accessing elements of that array could produce out-of-
bounds accesses.

Additionally, the interaction of FlatBuffers with other serialization mechanisms could
present different or compounded vulnerabilities that are not explored in this study.

The work affecting vulnerable schema files on GitHub could also be included as the
tools used in this thesis were only able to analyze singular .fbs files which do not import
definitions from other schema files. The same tool also only checked for very specific
ways of constructing DAG-Explosions. More and different construction methods could
be integrated into the analysis tool to more accurately detect schemas that allow such
attacks and that were currently not successfully detected.

62

8 Conclusion
This thesis has provided an extensive analysis of the FlatBuffers encoding protocol,
highlighting its security implications and inherent vulnerabilities. Through a structured
approach, various aspects such as schema reverse-engineering, protocol attack vectors,
including DAG-Explosion and Data Overlap attacks, and the practical impact of these
vulnerabilities have been explored. The findings demonstrate significant risks associ-
ated with handling untrusted FlatBuffers encoded messages. Malicious actors can craft
messages that pose significant DoS risks. The inherent design flaws in the protocol, such
as dependency on offsets and lack of built-in comprehensive validation, leave systems
open to severe exploitation.

The comparative evaluation of different programming language implementations of
FlatBuffers reveals substantial discrepancies in their robustness and security measures.
While the implementations in languages like Rust, C++, and C# offer validation
mechanisms that can mitigate some of these risks, others like Go, Java, Python, and
TypeScript/JavaScript present more severe vulnerabilities due to the absence of such
counters and their general failure to gracefully handle errors.

Different attacks were demonstrated to show substantial effectiveness in exploiting these
vulnerabilities, leading to exponential memory and CPU resource consumption, which
could drastically impair the targeted systems while requiring only minimal attacker re-
sources. Other attacks significantly increase the risk of ambiguous data interpretation,
leading to potential unpredictable behaviors and security lapses stemming from unsafe
in-place modifications.

Several recommendations emerge from the research to enhance security when using
FlatBuffers:
1. Mandatory Validation: Enforce rigorous validation, especially for C++, using

routines built into flatc, and ensure that these are well-documented and integrated
into the usual data handling workflows.

2. Improved API Design: Revise the FlatBuffers API to adopt secure defaults, ex-
plicitly marking unsafe operations, and integrate validator usage clearly within the
default workflow.

3. Comprehensive Documentation: Update and enhance FlatBuffers’ documenta-
tion to prominently feature security practices and failure conditions, ensuring de-
velopers are aware of and can easily implement protective measures.

4. Resource Monitoring: Implement robust monitoring and limiting of memory and
CPU usage to detect and mitigate abnormal patterns indicative of attacks.

5. Cautious Downstream Use: Always avoid in-place modifications and carefully
manage the transition of FlatBuffers data to downstream systems to prevent cas-
cading vulnerabilities.

There is however still open research which could improve the FlatBuffers security land-
scape such as extending the analysis to additional programming languages and alternate
implementations, exploring other attack vectors such as alignment issues or overflow
conditions, and improving tooling for detecting and preventing vulnerable schemas.

63

In conclusion, while FlatBuffers offers numerous advantages for fast and efficient se-
rialization, its proper and secure implementation requires a careful approach, robust
validation mechanisms, and comprehensive developer awareness to mitigate potential
security risks.

64

Appendix

Glossary
API – Application Programming Interface: A software interface over which two

or more computers or components interoperate.

CGroup – Control-Group: A linux kernel feature that allows limiting and account-
ing of a collection of processes.

DAG – Directed-Acyclic-Graph: A type of directed graph whose nodes don't form
a closed loop.

DoS – Denial-of-Service: A type of attack whose goal it is to reduce the availability
of a target system.

FlatBuffers: The binary encoding and data transfer protocol whose inherent security
and implementation quality are the topic of this thesis.

JSON – JavaScript Object Notation: An open standard data interchange format
that uses human-readable text to store and transmit data objects consisting of at-
tribute-value pairs and arrays.

ProtoBuf – Protocol Buffers: Another language-neutral, platform-neutral extensi-
ble mechanism for serializing structured data similar to FlatBuffer in many aspects.

TCP – Transmission-Control-Protocol: One of the main protocols of the Internet
protocol suite which provides reliable, ordered, and error-checked delivery of a stream
of bytes between networked applications.

flatc: The main FlatBuffer implementation by Google.

flatcc: The C implementation for FlatBuffer done by dvidelabs.

sysfs: A pseudo-filesystem which exports information about the state of various kernel
objects to user-space through virtual files. Usually mounted under /sys.

tflite-micro – Tensorflow Lite for Microcontrollers: A mobile library for deploy-
ing machine learning models on microcontrollers and other edge devices.

I

Bibliography
[1] “FlatBuffers.” Accessed: Oct. 17, 2023. [Online]. Available: https://flatbuffers.dev/

[2] “JSON Schema.” Accessed: Aug. 13, 2024. [Online]. Available: https://json-
schema.org/

[3] “Protocol Buffers.” Accessed: Aug. 13, 2024. [Online]. Available: https://protobuf.
dev/

[4] “W3C XML Schema Definition Language (XSD) 1.1.” Accessed: Aug. 13, 2024.
[Online]. Available: https://www.w3.org/TR/xmlschema11-1/

[5] “gRPC.” Accessed: Aug. 13, 2024. [Online]. Available: https://grpc.io/

[6] S. S. Laurent, J. Johnston, E. Wilder-James, and D. Winer, Programming Web
Services with XML-RPC: Creating Web Application Gateways. O'Reilly Media,
Inc., 2001.

[7] T. Greifenberg et al., “A comparison of mechanisms for integrating handwritten
and generated code for object-oriented programming languages,” in 2015 3rd In-
ternational Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015.

[8] “6.64.10 Structure-Layout Pragmas,” Using the GNU Compiler Collection (GCC).
Accessed: Aug. 13, 2024. [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-
14.2.0/gcc/index.html

[9] “2.6 Load and Store Instructions,” in The RISCV-V Instruction Set Man-
ual Volume I: User-Level ISA, Document Version 20240411-draft. Accessed:
Aug. 13, 2024. [Online]. Available: https://drive.google.com/file/d/1uviu1nH-
tScFfgrovvFCrj7Omv8tFtkp/view

[10] Y. Wang et al., “A semantics aware approach to automated reverse engineering
unknown protocols,” in 2012 20th IEEE International Conference on Network
Protocols (ICNP), 2012.

[11] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol reverse engi-
neering using semantic information,” in Proceedings of the 9th ACM symposium
on Information, computer and communications security, 2014.

[12] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling
active botnet infiltration using automatic protocol reverse-engineering,” in Pro-
ceedings of the 16th ACM conference on Computer and communications security,
2009.

[13] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins,” Journal of molecular
biology, vol. 48, no. 3, 1970.

II

https://flatbuffers.dev/
https://json-schema.org/
https://json-schema.org/
https://protobuf.dev/
https://protobuf.dev/
https://www.w3.org/TR/xmlschema11-1/
https://grpc.io/
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/index.html
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/index.html
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

[14] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “ReFormat: Automatic re-
verse engineering of encrypted messages,” in European Symposium on Research in
Computer Security, 2009.

[15] “Encoding,” Protocl Buffers Documentation. Accessed: Nov. 06, 2023. [Online].
Available: https://protobuf.dev/programming-guides/encoding/

[16] “PRE-list.” Accessed: Nov. 06, 2023. [Online]. Available: https://github.com/
techge/PRE-list

[17] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos, “Highly re-
silient peer-to-peer botnets are here: An analysis of gameover zeus,” in 2013 8th
International Conference on Malicious and Unwanted Software: 'The Americas-
' (MALWARE), 2013.

[18] S. Haas, S. Karuppayah, S. Manickam, M. Mülhäuser, and M. Fischer, “On the
resilience of P2P-based botnet graphs,” in 2016 IEEE Conference on Communi-
cations and Network Security (CNS), 2016.

[19] “Reverse engineering #4258.” [Online]. Available: https://github.com/google/
flatbuffers/issues/4258

[20] “FlatBuffers: FlatBuffer Internals.” Accessed: Aug. 07, 2024. [Online]. Available:
https://flatbuffers.dev/flatbuffers_internals.html

[21] K. M. Elleithy, D. Blagovic, W. K. Cheng, and P. Sideleau, Cybernetics, and In-
formatics 3.1, pp. 66–71, 2005.

[22] “Slowloris DDoS attack | Cloudflare.” Accessed: Aug. 14, 2024. [Online]. Available:
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/

[23] “1.1 DNS amplification attack,” in SSAC Advisory SAC008 DNS Distrib-
uted Denial of Service (DDoS) Attacks, 2006. Accessed: Aug. 14, 2024.
[Online]. Available: https://itp.cdn.icann.org/en/files/security-and-stability-
advisory-committee-ssac-reports/dns-ddos-advisory-31mar06-en.pdf

[24] S. Bratus et al., “Curing the vulnerable parser,” USENIX ;login, 2017, [On-
line]. Available: https://www.usenix.org/system/files/login/articles/login_spring
17_08_bratus.pdf

[25] “FlatBuffers Binary Format.” Accessed: Aug. 07, 2024. [Online]. Available: https://
github.com/dvidelabs/flatcc/blob/master/doc/binary-format.md

[26] G. Candea, “Predictable Software–A Shortcut to Dependable Computing?,” arXiv
preprint cs/0403013, 2004, [Online]. Available: https://arxiv.org/pdf/cs/0403013

[27] Y. Acar et al., “You get where you're looking for: The impact of information
sources on code security,” in 2016 IEEE symposium on security and privacy (SP),
2016.

[28] P. L. Gorski, S. Möller, S. Wiefling, and L. L. Iacono, ““I just looked for the so-
lution!” On Integrating Security-Relevant Information in Non-Security API Doc-

III

https://protobuf.dev/programming-guides/encoding/
https://github.com/techge/PRE-list
https://github.com/techge/PRE-list
https://github.com/google/flatbuffers/issues/4258
https://github.com/google/flatbuffers/issues/4258
https://flatbuffers.dev/flatbuffers_internals.html
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/dns-ddos-advisory-31mar06-en.pdf
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/dns-ddos-advisory-31mar06-en.pdf
https://www.usenix.org/system/files/login/articles/login_spring17_08_bratus.pdf
https://www.usenix.org/system/files/login/articles/login_spring17_08_bratus.pdf
https://github.com/dvidelabs/flatcc/blob/master/doc/binary-format.md
https://github.com/dvidelabs/flatcc/blob/master/doc/binary-format.md
https://arxiv.org/pdf/cs/0403013

umentation to Support Secure Coding Practices,” IEEE Transactions on Software
Engineering, vol. 48, 2021.

[29] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking SSL devel-
opment in an appified world,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013.

[30] “Decompression bomb vulnerabilities,” AERA Network Security. Accessed: Aug.
13, 2024. [Online]. Available: https://web.archive.org/web/20160303233826/http:
//www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html

[31] “CVE-2003-1564,” MITRE Corporation. Accessed: Aug. 13, 2024. [Online]. Avail-
able: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564

[32] “FlatBuffers: Platform / Language / Feature support .” Accessed: Aug. 15, 2024.
[Online]. Available: https://flatbuffers.dev/flatbuffers_support.html

[33] “FlatBuffers: Tutorial.” Accessed: Aug. 15, 2024. [Online]. Available: https://
flatbuffers.dev/flatbuffers_guide_tutorial.html

[34] “FlatBuffers: Use in C++.” Accessed: Aug. 15, 2024. [Online]. Available: https://
flatbuffers.dev/flatbuffers_guide_use_cpp.html

IV

https://web.archive.org/web/20160303233826/http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
https://web.archive.org/web/20160303233826/http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://flatbuffers.dev/flatbuffers_support.html
https://flatbuffers.dev/flatbuffers_guide_tutorial.html
https://flatbuffers.dev/flatbuffers_guide_tutorial.html
https://flatbuffers.dev/flatbuffers_guide_use_cpp.html
https://flatbuffers.dev/flatbuffers_guide_use_cpp.html

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudi-
engang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilf-
smittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
– benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen ent-
nommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich
die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe.

Hamburg, den 07. March 2025:

Einstellung in die Bibliothek der Informatik
Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereich Informatik zu.

Hamburg, den 07. March 2025:

V

	Introduction
	Background
	Schemafull Communication
	Code Generation
	Memory Layout of Data Structures
	FlatBuffers Workflow

	Scope and Related Work
	Related Work
	Protocol Extraction and Reverse Engineering
	Generic Automatic Extraction
	Specific Protocol Extraction
	Reverse Engineering FlatBuffers

	Denial of Service Vectors and Attacks
	DoS Vectors
	Resources commonly impacted by DoS-Attacks

	Input-Validation and Language-Security
	FlatBuffers Security
	Dependable API Design
	Summary

	Research Questions

	FlatBuffers Protocol Analysis
	FlatBuffers Encoding Rules
	Scalar Primitives
	Structs
	Tables
	Variable-Length Vectors
	Strings
	Enums
	Unions
	Offsets
	Other Encoding Considerations

	Reverse Engineering Considerations
	Attack Vectors against the FlatBuffers format
	Format Violations
	DAG-Explosion Attack
	Data Overlap Attack

	Practical Security Evaluation
	Real-World Vulnerable Schemas
	GitHub Schema Crawling
	Automated Schema Analysis
	Results

	FlatBuffers Language Implementation Comparison
	Language Comparison Environment
	Attack Impact Measurement
	Language Comparison Results
	General Shortcomings
	C++
	C#
	Go
	Java
	Python
	Rust
	TypeScript / JavaScript
	Summary

	DAG-Explosion DoS impact
	Memory Impact of Tree-Walk
	CPU Impact of Tree-Walk
	Memory Impact of Linearization

	Discussion
	Vulnerabilities
	Improvement Suggestions

	Limitations and Future Work
	Conclusion
	Glossary
	Bibliography

