
B A C H E L O R T H E S I S

Integration of Software Development Testing
Practices in Robotics

MIN Faculty
Department of Informatics

at Research Group Technical Aspects of Multimodal Systems, TAMS

Finn-Thorben Sell

finn-thorben.sell@studium.uni-hamburg.de
B.Sc. Informatik
Sutdent ID Number: 7047081

Supervisor: Marc Bestmann
Second Supervisor: Dr. Andreas Mäder
Date: July 6, 2021

Abstract

Verification of software correctness is an essential part of software development
but also often difficult to do. This is especially the case in the development of
complex autonomous systems like soccer-playing robots. For this bachelor thesis,
a complete system has been developed to form a consistent and easy-to-use en-
vironment in which the RoboCup team Hamburg Bit-Bots can write its tests. A
build automation platform has also been set up to automatically run these tests as
checks whenever merge requests are created in the team’s repositories. Afterwards,
this system has been evaluated using a combination of qualitative feedback and
quantitative data. The results of this evaluation found the developed solution to
be generally valuable and performing as expected.

Zusammenfassung

Verifikation der Korrektheit von Software ist ein essentieller Teil beim Entwickeln
der selbigen jedoch häufig schweirig umzusetzen. Dies ist besonders dann der Fall,
wenn die betroffene Software ein komplexes autonomes System ist wie etwa fußball-
spielende Roboter. Im Rahmen dieser Bachelorarbeit wurde eine Komplettlösung
entwickelt, um eine möglichst konsistente und einfach zu benutzende Umgebung
bereitzustellen, in der die Mitglieder des RoboCup Team Hamburg Bit-Bots Tests
erstellen und ausführen können. Es wurden außerdem Automatisierungsdienste
aufgesetzt, welche ebendiese Tests automatisch ausführen, wenn Änderungsan-
fragen in den Repositories des Teams erstellt werden. Anschließend wurde das
Komplettsystem anhand von gesammeltem Feedback und erhobenen qualitativen
Daten evaluiert. Diese Evaluation ergab, dass die Entwickelte Lösung allgemein
gut geeignet und wertvoll für das Team ist.

Contents

1 Introduction 1

2 Fundamentals 3
2.1 Different Kinds of Tests . 3
2.2 Standard Solutions for Writing Tests 4
2.3 ROS – Robot Operating System . 5
2.4 Build Automation . 6
2.5 Containers . 7

3 Related Work 8

4 Tool Analysis 10
4.1 Build Automation platform . 10

4.1.1 Requirement definition . 11
4.1.2 Beneficial Aspects . 12
4.1.3 Fulfillment Analysis . 13

4.2 Testing frameworks . 15
4.2.1 Python Unit Tests . 15
4.2.2 C++ Unit Tests . 16
4.2.3 System Tests . 16

5 Implementation 17
5.1 Build Automation Platform . 17

5.1.1 Jenkins Configuration . 17
5.1.2 Pipeline Abstraction . 18

5.2 Testing Framework bitbots test . 20
5.2.1 Test Auto Discovery . 20
5.2.2 General Test Authoring Utilities 21
5.2.3 Rostest Utilities . 22
5.2.4 Team-Specific Utilities . 22

6 Evaluation 23
6.1 Qualitative Evaluation . 23
6.2 Quantitative Evaluation . 24

7 Discussion 28
7.1 Conclusion . 28
7.2 Future Work . 29

1 Introduction

With the increasing use of autonomous systems, their correctness becomes ever
more important but also ever more challenging to verify. One example where
this is the case is the software system of the RoboCup team Hamburg Bit-Bots.
The RoboCup Humanoid League is an international competition in which teams
participate to operate a completely autonomous humanoid robot that is supposed
to play soccer on a level equal to humans by the year 2050. In this competition,
the Hamburg Bit-Bots participate since 2012. Accordingly, its software has grown
massively over the years, with many different people involved in different parts
of it. This has resulted in an increasingly complex and interconnected software
system that is very hard to test, especially when considering all possible edge
cases of such a large system. As a consequence, the team currently does not use
any form of automated or even standardized testing procedures but instead has to
verify each component manually. Doing so has resulted in several problems for the
team because not every member is an expert in every part of the system, and it
is tough to verify that a slight change in one component does not break another.
Because of that, the team voiced the need for a more standardized way to conduct
testing, which led to this bachelor thesis. However, the methods in which testing
can be done differ broadly and include but are not limited to regular automated
tests or just guidelines for conducting manual testing. The goal of this thesis is
thus to evaluate the different methods and establish a system under which the
team can more efficiently test its software. Although the solution is developed
with the teams’ requirements in mind, it is intended to be generally reusable for
any project using ROS ecosystem.

Part of the proposed solution is the combined usage of Unit testing as well as
System testing with direct integration into the team’s build tooling. These tests
are, however, only authored using the two programming languages Python [39] and
C++ because those are the only two languages used by the team with Python being
the primarily used language and C++ only being used for specific components that
have to be very performant. Additionally, build automation tools play an essential
role in continuously executing the implemented tests and verifying that the team’s
software is always stable. But since many different solutions for build automation
have been created, an analysis must be performed to choose one.

1

Due to the team’s commitment to the open source philosophy, all the accom-
panying source code of the software created during this thesis is available un-
der an MIT license in the GitHub repositories bit-bots/bitbots_tools1, bit-
bots/bitbots_containers2 and bit-bots/bitbots_jenkins_library3.

This thesis is structured as follows. At first, important terminology is introduced
in chapter 2. Afterwards, scientific literature regarding testing methods as well as
difficulties and solutions existing in the field of robotics are discussed in chapter 3.
To establish a suitable testing methodology, the base toolset upon which to build
is discussed and chosen in chapter 4. More details about the team’s specific re-
quirements on these tools are also discussed there. However, because the chosen
tools do not fully provide a complete testing solution, they are further extended
with the implementation of these extensions being described in chapter 5. After-
wards, the testing solution as a whole is evaluated qualitatively and quantitatively
in chapter 6 with a final discussion following in chapter 7.

1https://github.com/bit-bots/bitbots_tools
2https://github.com/bit-bots/containers
3https://github.com/bit-bots/bitbots_jenkins_library

2

https://github.com/bit-bots/bitbots_tools
https://github.com/bit-bots/containers
https://github.com/bit-bots/bitbots_jenkins_library

2 Fundamentals

This chapter defines the necessary terminology and concepts which are essential to
this thesis. It first differentiates between the different kinds of tests based on their
goal, scope, and underlying design knowledge in section 2.1. Afterwards essential
software and frameworks are explained in section 2.2 and section 2.3. Finally, a
differentiation is made between continuous integration and build automation in
section 2.4 after which container technologies are described in section 2.5.

2.1 Different Kinds of Tests

The IEEE Standard Glossary of Software Engineering Terminology [90] defines
different kinds of test practices.

One of these is unit testing which is defined as “Testing of individual [. . .] units or Unit
testinggroups of related units” [90]. According to most software engineers, an additional

property of unit tests is that they are “executed by the developer in a laboratory
environment, that should demonstrate that the program meets the requirement”
[Boy00]. Another important fact is that unit tests are purely technical tests de-
signed and executed by developers without much influence from quality assurance
or dedicated testing teams. Likewise, unit tests verify the correctness of a sys-
tem in terms of what the developer expects, which is not necessarily what other
stakeholders expect [Boy00].

For the context of this thesis, no differentiation between Unit testing, Component
Testing, and Interface Testing is made because all of them are defined as testing
a singular component or unit out of context of a larger system [90].

Another fundamentally different kind of test is the practice of system testing which System
testingcan be defined as “Testing conducted on a complete, integrated system to evaluate

the system’s compliance with its specified requirements” [90]. Its goal is to verify
that all system components have been properly integrated by placing them in real-
world usage scenarios [SBC12]. Similar to system testing is integration testing
which is defined as “testing in which [. . .] components are combined and tested
to evaluate the interaction between them” [90]. The critical difference between
these two is that the former verifies that a system produces an intended outcome

3

without any care as to how this was achieved. In contrast, the latter aims to verify
the correct interaction between components and thus exactly the way in which the
outcome was achieved.

While System testing and Unit testing differ in their system-under-test, the knowl-
edge with which a test is written can also be differentiated. If the test is based
on an analysis of internal workings and the structure of a piece of software, it is
called White Box testing . It could be used to, for example, verify that all branchesWhite

Box
testing

of a control flow are correctly implemented by writing test cases specific to them.
In opposition to this stands the practice of Black Box testing in which tests are

Black
Box
testing

written “based on the analysis of the specifications of a piece of software without
reference to its internal working” [Kha10]. Black box tests are often more fun-
damental because they only verify that input is correctly accepted and output is
correctly produced with no regard to the internal structure of the system under
test. While this can be used in functional tests like system tests, it is employed in
stress testing scenarios but also usability tests that require user interaction. In the
real world, however, these two definitions are not always clearly applicable because
the two methods are mixed, which is then called Grey Box testing [Kha10].

A particular form of black box testing is Property testing which has the goal ofProperty
testing determining whether a system under test has a predetermined property or is far

from having it. This should be performed by inspecting the system’s behavior
when given a small, possibly randomly selected subset of possible inputs. The
testing algorithms are designed to compute an approximate and not exact decision
on whether the system under test fulfills the defined property because it is simply
unfeasible to prove correctness by testing all possible inputs [Ron01].

This testing method can be useful when verifying a system with large input space.
For example, an encryption algorithm should fulfill the property of being reversible,
thus reproducing the input again. Property testing has been popularized by the
introduction of quickcheck [CH11] to Haskell, which has since been ported to other
languages [30] and inspired similar projects [37].

2.2 Standard Solutions for Writing Tests

Most modern programming languages like Python [39], Rust [32], Go [34], Java
[23] and others have a part of their standard library dedicated to writing Unit
Tests. Figure 2.1 shows the structure of a simple unit test in the unittest [36]
framework which is built into Python.

It is evident that language designers have recognized the need for writing tests
and have thus created the possibility to do so simply and easily. However builtin
frameworks often only provide rudimentary features which prompted the creation

4

1 import unittest

2

3 class TestMath(unittest.TestCase):

4 def test_multiply(self):

5 self.assertEqual(6, 3*2)

Figure 2.1: A simple unit test in python consisting of a class inheriting from Test-

Case and defining one or more test_* methods.

of extensions like nosetest [26], nose2 [38] or pytest [29] in python. These simplify
the execution and definition of tests further while also providing customization
options through plugins.

2.3 ROS – Robot Operating System

ROS [Qui+09], the Robot Operating System, is contrary to its name, not an op-
erating system but a framework for building robot software1. It was originally
created by WillowGarage but is now developed and maintained by the nonprofit
Open Source Robotics Foundation (OSRF) [27]. It was designed to

� manage the communication between multiple independent processes on one
or more computers,

� support various programming languages,

� provide many reusable tools,

� achieve modularity in large systems through standardized interfaces, and

� be free and open source. [Qui+09]

In practice, ROS has a large variety of existing packages, which abstract away
many challenges when dealing with the control of robots. In 2017, the usage of
ROS for information exchange between software components of a humanoid soccer
robot was proposed. The proposal was designed to allow the reuse of software
between different RoboCup teams in the humanoid league and shows how ROS
can be used to achieve this [Bes17].

The ROS architecture is composed of the following relevant concepts. Of course,
more exist because of the open nature of ROS, but only these are relevant to this
thesis.

1This thesis focuses on ROS 1, not 2

5

Nodes are the processes running in a ROS system that perform arbitrary compu-
tation. Each process must always have a node associated with it in order to
interact with the rest of the system.

Messages are strictly typed data structures which nodes pass between each other on
named topics. Interface stability is achieved by standardizing and stabilizing
these since that is the primary API a node exposes to the rest of the system.
Each node can also freely chose when it subscribes to which topics, and any
number of nodes may publish and subscribe on any given topic.

Packages are similar to packages in other contexts and bundle software. They also
include metadata and build information.

Roscore is a central management server to which all processes connect. It manages
the list of known nodes, topics, parameters, and other general management
activities.

Launch Files are XML files that describe how nodes are started, which parameters to load
onto the parameter server, and which dependent nodes are also started.

Catkin is the CMake [12] based build system used in ROS packages. It provides
CMake functions that are required to interact with the ROS system cor-
rectly. There is also a python package named catkin tools [9] which provides
a catkin executable and is used to manage catkin based builds.

2.4 Build Automation

Recently the practice of Continuous Integration (CI) has increased in popularityCI
with ever more service offerings for it. The term has since become muddled and
is interpreted by some people to mean automation of builds and tests whenever
changes occur. While that is indeed an essential part of continuous integration,
it is only a part, whereas continuously integrating software originally described
the “practice where members of a team integrate their work frequently” [Fow06].
This thesis is partly concerned with introducing continuous integration practices
into the Hamburg Bit-Bots team but, more importantly, describes how a build
automation platform can be designed to support it.

While on this topic, it is helpful to disambiguate between Continuous Integration
and Continuous Delivery (CD). While CI aims to always have team members work
as closely as possible on the primary copy, CD aims to deliver or deploy this main
copy as soon and often as possible.

Build automation platforms often introduce a few core concepts. One of these
is the concept of a job which is an instantiation of a build pipeline. This meansJob
that a build pipeline is the configuration about exactly what a build automation

6

platform should do, whereas a job is the execution of the pipeline. Additionally,
jobs are often not directly running on the build automation platform’s hardware
but instead on a separate computer connected to it. These separate computers are
called workers . Worker

2.5 Containers

Along with build automation came the need to quickly and in scale create build
environments as well as running software in a stable and reproducible environment.
This need was met by containerization technologies like Docker [17]. Containers
are standardized packages that include the software and everything needed to run
it, like a runtime, tools, and libraries. To be precise, the standardized software
packages are container images and consist of a complete filesystem and some meta- Image
data about the image. Only when an image is started, and a process runs inside
this filesystem it becomes a container . Containers are often isolated from the host Container
computer running it and only have access to what was explicitly granted.

7

3 Related Work

The difficulties of ensuring the correctness of autonomous systems have been
discussed extensively. Afzal [Afz18; Afz+20a; Afz+20b] and Timperley et al.
[Tim+18] have conducted extensive research into the general feasibility of test-
ing robotic systems in simulated environments. They found that while there is a
non-negligible gap between reality and what a simulator can simulate, most errors
can nonetheless be discovered. According to their findings, most bugs surface under
relatively simple conditions caused by configuration, setup, or simple to discover
programming errors. As a result, Timperley et al. propose the use of black-box
testing to probe a system’s general correctness and discover these simple errors
[Tim+18].

Outside of robotics in the general software development industry, automated soft-
ware testing has increased in popularity and prompted several surveys into how
companies conduct testing. Most important for this thesis are the works of Rune-
son as well as Daka and Fraser. Their surveys have found that testing is generally
a process that tightly involves software developers and should not be done by a
separate quality assurance department. This is due to the fact that developers are
the ones actually writing software and reacting to test results. Because testing
is such a developer-involved process, they found that a successful testing strat-
egy must be as developer-friendly as possible. This entails the need for tests to
produce quick feedback, which a developer can immediately integrate into their
development, good integration into existing infrastructure so that results are al-
ways available when needed, and good APIs which a test author can use to author
their tests [Run06; DF14].

Of course, there has also been some previous effort to develop testing frameworks
specific to robotics. One such framework was developed by Paikan et al. [Pai+15].
They have introduced a generic framework in which test cases are written using
Python, Lua, or C++, test fixtures are created using dynamically loaded libraries,
and both are tied together using an XML based test suite definition. A test runner
then executes the thereby defined test suite. This framework is very generic and
not integrated into the team’s development environment (notably ROS). While
such an integration would theoretically be possible, ROS already supports some
other existing tools as is described in chapter 4, which is why the framework
introduced by Paikan et al. is not directly used in this thesis. However, the design

8

considerations that went into it, as well as essential conclusions, were taken into
account when choosing and designing the framework proposed in this thesis.

As previously mentioned, build automation and continuous integration play an im-
portant part in verifying software correctness and increasing productivity. Hilton
et al. have analyzed the usage, costs and benefits of using continuous integration
technologies in “Usage, costs, and benefits of continuous integration in open-source
projects”. Their results indicate that most projects intend to or are already using
CI. Additionally the primary reason for not using CI is not it’s high maintenance
costs or ineffectiveness but rather that most projects are not familiar enough with
CI systems or do not have any automated tests in the first place [Hil+16]. This
research also indicates that using build automation is indeed an important when
developing a test methodology. The discovered costs and best practices have been
considered during this thesis.

9

4 Tool Analysis

This chapter outlines precisely what kind of solution the Hamburg Bit-Bots team
needs by formulating its requirements. First, some general design guidelines and
requirements are formulated here with more detailed ones following in section 4.1
and section 4.2.

General requirements on the complete solution as formulated by the team are:

� Run tests automatically when new code is requested to be merged into our
repositories and manually whenever necessary.

� Enable simulator-based integration testing of multiple components in differ-
ent scenarios as well as unit testing for single components.

� Control physical tests (like hardware control) over the same interface as
software tests.

� Support at least unit tests written in all of the team’s programming languages
(Python, C++).

� Be as simple as possible to use and configure.

These form a base set of requirements that are taken into account when choosing
any of the following solutions and additionally serve as guidelines for the latter
extension done in chapter 5.

4.1 Build Automation platform

Since one of the major requirements is for tests to run automatically on merge
requests, some service needs to exist to do so. Build automation platforms have
been created specifically to build and test code changes whenever they occur, which
makes them an obvious choice for this problem.

However, because there are many different platforms available to choose from, a list
of requirements and other additional factors has been created in section 4.1.1 and
section 4.1.2 with 18 platforms being evaluated according to these requirements in
section 4.1.3.

10

4.1.1 Requirement definition

This section describes hard requirements which a build automation platform must
fulfill in order for it to be chosen.

Job Configuration-As-Code

This requirement dictates that the build jobs that will run on the chosen platform
should be configurable via a configuration file or defined through code that the
platform executes on each job. While it might seem obvious, it contrasts with
configuration done solely through a graphical user interface.

This has the benefit that a job configuration can more easily be reused by other
internal and also foreign projects requiring a similar, if not the same, configuration.
It also has the added benefit of making a platform’s configuration reproducible
should there ever be a need to set up the system from scratch again.

On Premise Workers

One of the use cases intended for the test system by the Hamburg Bit-Bots team
is to run expensive tests of the whole system in a simulated environment. This is
computationally difficult, and all hosted build automation platforms are restrictive
about how much CPU, Memory, compute-time, or drive capacity a job is allowed
to allocate, so we need to be able to supply our own workers, which do not have
these kinds of restrictions. Additionally, the team uses custom hardware, e.g.,
an Intel Neural Compute Stick [22] which are also intended to be subjected to
automated testing. This can realistically only be done if the platform supports
supplying your own hardware. The job management, user interface, and other
non-worker components may be offered as a service by a provider.

Low Cost

The Hamburg Bit-Bots team is a student-organized team that receives all of its
funds either through sponsoring or as a budget by the University of Hamburg. Most
of these funds are spent on hardware for robots or computers in the workspace.
These preconditions require the team to be very careful about additional spending,
especially recurring subscriptions, and we avoid it if we can. Because of that, the
chosen build automation platform should either have a free-tier that fulfills the
remaining requirements or a special policy for open source projects under which
the team falls. Furthermore, this requirement ensures that the developed testing
solution has a low entry barrier and can easily be reused by others.

11

4.1.2 Beneficial Aspects

This section describes aspects that are not hard requirements of the chosen plat-
form but instead serve as an additional set of criteria that are beneficial for a
platform to fulfill in order for it to be chosen.

Job abstraction

The Hamburg Bit-Bots team has its code organized over several git repositories, all
with similar structures. Because of this, job configurations will largely be repetitive
throughout these repositories. It is, therefore, desirable for a build automation
platform to support a way to abstract job configuration so that each repository
only configures a job in the aspects that differ between them and leaves common
configuration to the abstraction.

Platform Configuration-As-Code

Suppose the chosen build automation platform is entirely hosted on-premise. In
that case, it should itself be completely configurable through configuration files for
the same reasons that job configurations are required to be configurable as code.

Explicit GitHub Integration

The git repositories used by the Hamburg Bit-Bots team are hosted on GitHub,
which offers additional features to being a hosted git repository such as pull request
status checks [2]. These checks offer an easier evaluation of merge requests, and it
is desirable for a build automation platform to explicitly integrate with GitHub to
annotate merge requests with these checks.

Other integration features such as the automatic discovery and registration of an
organization’s repositories and immediate creation of new jobs are also nice to
have.

Existing Community

Because of the earlier low cost requirement, the availability of premium-level sup-
port is not guaranteed if problems arise on the chosen platform. Instead, a fallback
on community resources such as documentation, blogs, or forums should be possi-
ble. These, however, only exist if the platform is popular enough for a community
to have formed around it that created said resources.

This aspect is subjective, and a rating is given based on my impressions while
evaluating the different build automation platforms.

12

Open Source

The Hamburg Bit-Bots team believes strongly in the open source vision and per-
forms all of its development publicly and under an MIT license. It would be in line
with this belief for a build automation platform to also be developed and main-
tained as an Open-Source project under one of the licenses approved by the Open
Source Initiative [25].

4.1.3 Fulfillment Analysis

Table 4.1 shows a list of build automation platforms and which of the previously
defined requirements they fulfill. Platforms that do not support the usage of
custom toolchains or do not have explicit support for ROS are not included in this
list at all.

The platforms which passed all requirements have been reviewed further by ana-
lyzing any additional aspects. Table 4.2 shows the result of this analysis.

Jenkins is the clear winner of this analysis since it is the only platform fulfilling
all requirements and offering all additional beneficial aspects. Nevertheless, and
although the Open Source aspect is important to the team, it could be argued that
GitHub Actions, while not being Open Source, offers the same amount of features
with the addition of taking care of a potentially sizeable administrative burden.

The final decision nonetheless fell onto Jenkins because of the following reasons.
First, the team already had a configured Jenkins instance from previous automa-
tion experiments and has already gained some experience with it. Additionally,
GitHub Actions is an offering by the for-profit company GitHub and thus inher-
ently intends to generate profits. Moreover, although GitHub offers free tiers for
open source projects that would apply to the Hamburg Bit-Bots, the team would
still be reliant on GitHub not changing its policy or risk not being able to run
its workload. Finally, GitHub Actions only supports GitHub itself as a version
control system, whereas Jenkins can run pipelines from anywhere. Additionally
Jenkins offers a lower entry barrier because it is usable by everyone even if they
do not qualify for GitHub’s free tier.

1Is on-premise but pricing depends on the number of agents.
2Atlassian provides free cloud licenses for Open-Source projects, but Bamboo is not a cloud

offering.
3Workers are only supported with a separate subscription.
4Has a free tier that is restricted to less than the team’s expected workload.
5Relatively new but very popular and growing fast
6Open Source Community edition and proprietary Enterprise Edition
7Supports GitHub but only for free during the year of 2020

13

Platform Job-CaC On-Premise-Workers Low cost

AWS CodeBuild [4] 3 7 7

Azure Pipelines [5] 3 3 k4

agola [3] 3 3 3

Bamboo [6] 3 k1 72

Buddy [7] 3 k3 3

Buildbot [8] 3 3 3

Circle CI [15] 3 k3 3

Concourse [13] 3 3 3

Codeship [11] 7 7 7

Drone [16] 3 3 3

GitHub Actions [19] 3 3 3

GitLab CI [20] 3 3 3

GoCD [28] 3 3 3

Google Cloud Build [10] 3 7 k4

Jenkins [24] 3 3 3

Semaphore [14] 3 7 3

TeamCity [33] 3 3 3

TravisCI [35] 3 7 3

Table 4.1: The list of evaluated build automation platforms and whether they ful-
fill the given requirements. Platforms that fulfill all requirements are
marked green.

14

Platform Job abstraction Platform-CaC GitHub Community Open Source

agola 7 3 7 7 3

Buildbot 3 3 3 7 3

Concourse 3 3 3 7 3

Drone 3 3 3 k5 k6

GitHub Actions 3 n/a 3 3 7

GitLab CI 7 3 k7 3 k6

GoCD 7 3 3 3 3

Jenkins 3 3 3 3 3

TeamCity 3 7 3 3 7

Table 4.2: Platforms that passed all requirements and whether they have any ad-
ditional beneficial aspects. GitHub Actions is externally hosted, which
makes the Platform-CaC aspect not applicable. It is marked with n/a.
Platforms that offer all aspects are marked green.

4.2 Testing frameworks

As explained in section 2.2, different test frameworks exist for different program-
ming languages and environments. Because this thesis aims to introduce a testing
methodology to the team Hamburg Bit-Bots, appropriate frameworks need to be
evaluated and chosen for all use cases. Generally, the kinds of tests that the team
wishes to perform can be sorted into the three categories Unit testing Python code,
Unit testing C++ code and System testing.

One of the major requirements laid out at the beginning of this chapter was that all
of these tests need to be runnable through the same interface. This interface was
chosen to be catkin tools because it supports running different kinds of tests, is a
commonly used tool in the ROS ecosystem, and is thus well supported and already
known well by the team. In general catkin tools supports any test framework which
can output its result in the Xunit format [40]. However, there are some which are
more directly supported. This means that catkin natively defines commands for
registering tests authored in these frameworks and knows how to run them. Which
test frameworks these are and how they can be used for the team’s use cases is
described in the paragraphs below.

4.2.1 Python Unit Tests

For writing unit tests in Python, catkin supports tests written using the nosetest
[26] package. This package is an extension of the standard libraries unittest [36]

15

that automatically discovers tests and renders results in a format chosen by the
user. Catkin automatically calls nosetest with the correct arguments for its regis-
tered tests and for writing results in an Xunit formatted file.

Because it is a small package that does not interfere with the inner workings of
unittest, many plugins such as Hypothesis [37] are still usable to support specific
scenarios like property testing. Additionally, nosetest is a well-established and
known framework in the Python ecosystem. Unfortunately though, it is discontin-
ued, so no new features and development are expected to happen. Nonetheless,
nosetest is a solid foundation upon which to build.

4.2.2 C++ Unit Tests

For writing unit tests in C++ catkin, supports the GoogleTest [21] framework. It is
relatively new in the C++ ecosystem but very popular and supports many different
use cases like mocking, test fixtures, parameterized tests. For these reasons, it was
chosen as the framework in which the team will write its C++ unit tests.

4.2.3 System Tests

Unit tests are one thing, but arguably the more significant tests are those that
verify that the whole system behaves as intended. Because of that, the majority of
tests are expected to be system tests, and of course, a framework for those needs
to be chosen as well. For the ROS ecosystem, there already exists a package called
rostest [31] which allows tests to run not just on their own but instead in the
context of a fully-fledged ROS system. This is implemented by rostest executing
ROS launch files on an isolated roscore. On this roscore it then starts all nodes
that are defined in the launch file normally. Additionally, nodes that are defined in
the launch file using a <test/> tag instead of a normal <node/> tag, are recognized
to be test nodes, started and monitored accordingly, and their results are collected
after they have finished executing. Once this is the case, all remaining nodes are
also stopped.

Similar to nosetest, rostest implements functionality for registration and manage-
ment of test environments but does not offer any tools or utilities when writing
actual test code. As a result, many common operations necessary for asserting the
system to be in a specific state must be re-implemented for every test. An example
of such a common operation would be the need to assert that a particular node
in the system is still running and responding to pings or that it has not logged
anything on the error or critical level.

16

5 Implementation

Chapter 4 discussed the tools upon which this bachelor thesis builds. It has high-
lighted the need for extensions of the chosen tools by showing their limitations.
This chapter first describes in section 5.1 how the chosen build automation plat-
form, Jenkins, is configured and how a library has been created to ease pipeline
configuration. Afterwards, the needed framework extensions are described in sec-
tion 5.2.

5.1 Build Automation Platform

For deploying Jenkins on the team’s server as well as running the automation jobs,
a container-based workflow has been chosen. It has the benefit of being universally
usable in multiple different environments without having to install system depen-
dencies beyond a container runtime. It also eases changing the job environment
because only a container image needs to be updated instead of all worker machines.
For this, two container configurations have been created which can be viewed in
the GitHub repository bit-bots/containers1:

1. A bitbots builder container which is dedicated to being able to compile, doc-
ument and test our codebase. It exists so that not all dependencies need to
be reinstalled during every job but are instead included in this base image.

2. A jenkins container, which includes the Jenkins software and all necessary
plugins.

5.1.1 Jenkins Configuration

Jenkins itself consists of only a small core application with a sophisticated plugin
architecture to extend nearly every part. Following is a list of the most important
plugins and the reason why they are used:

� Blue Ocean is a modern graphical user interface that makes interacting with
Jenkins easier for team members who do not have much experience working
with it.

1https://github.com/bit-bots/containers

17

https://github.com/bit-bots/containers

� Configuration as Code is a plugin that persists Jenkins platform configura-
tion into a file so that setting up the Jenkins server is reproducible.

� Git is a plugin for retrieving the team’s source code.

� GitHub is an integration into GitHub, which allows setting pull request
checks and automatic discovery of repositories. During the repository dis-
covery process, webhooks are automatically set up so that jobs are triggered
immediately when a new commit is pushed, or a merge request is created.

� Kubernetes is a build cloud implementation that simplifies scheduling of
builds onto workers supports the desired container-based workflow.

� Pipeline is the plugin that implements pipeline configuration as code.

As mentioned above, Jenkins itself is running in a container, and jobs are too. Con-
sequently, one of the additional jobs which Jenkins performs besides automation
of our software tests is to rebuild its own and the bitbots builder container images
periodically and when their specifications are changed. This process enables auto-
matic update installation transparently and efficiently. The configuration for this
can be viewed in the GitHub repository bit-bots/containers1 in the file Jenkinsfile2.

For jobs, Jenkins is configured to periodically scan the team’s GitHub organization
for all repositories containing a file called Jenkinsfile. This file acts as the pipeline
configuration file for the repository it is located in.

5.1.2 Pipeline Abstraction

As mentioned before, Jenkins offers the ability to abstract pipeline configuration
with so-called shared pipeline libraries [18]. As part of this thesis, one such li-
brary has been developed, which can be viewed in the GitHub repository bit-
bots/bitbots jenkins library3.

Its use can be seen in fig. 5.1 which is now used to explain the main concepts of
the library:

Line 1 Import bitbots jenkins library into this pipeline so that its commands can be
used.

Line 3 Call defineProperties() to set properties of this pipeline, e.g, whether
multiple pipelines for the current repository may run concurrently.

Line 5 Create a new pipeline variable which is an instance of BitbotsPipeline.
BitbotsPipeline is the primary content of the library and contains most of
the logic. The given constructor arguments are necessary for it to call Jenkins

2https://github.com/bit-bots/containers/blob/main/Jenkinsfile
3https://github.com/bit-bots/bitbots_jenkins_library

18

https://github.com/bit-bots/containers/blob/main/Jenkinsfile
https://github.com/bit-bots/bitbots_jenkins_library

functions. The constructor also accepts further configuration that affects
all packages configured later in the pipeline. For example, documentation
publishing can be generally enabled or disabled for change request builds
here.

Line 6 Call configurePipelineForPackage() on the pipeline variable which in-
structs the pipeline to run for a ROS package that is located in the current
repository and further defined as the functions arguments over the next lines.

Line 7 Create a new PackagePipelineSettings instance, which is a data structure
that holds information about what the pipeline should do for a specific pack-
age. For example, building the package’s documentation can be enabled or
disabled via this data structure. By default, all pipeline actions are enabled
if not explicitly disabled.

Line 8 Create a new PackageDefinition instance, which is part of PackagePipeli-
neSettings and defines where the package is located in the repository and
what its name is. The invocation shown here defines a package named ex-
ample package that is located in a folder with the same name.

Line 11 Execute the pipeline. At this point, worker resources will get allocated,
containers will be set up, and all the configured actions will be run.

For comparison, an equivalent non-abstracted pipeline, which includes all the nec-
essary logic that is currently defined in bitbots jenkins library would take up nearly
180 lines of code, with 50 of them repeating for each package in the repository. In
contrast, the abstracted pipeline takes ten lines of code with five of them (six to
ten in fig. 5.1) repeating for each package in the repository.

19

1 @Library("bitbots_jenkins_library") import de.bitbots.jenkins.*;

2

3 defineProperties()

4

5 def pipeline = new BitbotsPipeline(this, env, currentBuild, scm)

6 pipeline.configurePipelineForPackage(

7 new PackagePipelineSettings(

8 new PackageDefinition("example_package")

9)

10)

11 pipeline.execute()

Figure 5.1: An example Jenkins job configuration that uses bitbots jenkins library
to configure that a package named example package is located in the
current repository and all standard actions should be done for it.

5.2 Testing Framework bitbots test

Section 4.2 described which frameworks were chosen for the different kinds of
expected tests. It also highlights how some of the chosen frameworks are a good
starting point and solve the problem of interacting with ROS but lack utilities
and features when actually writing tests. Because of that, a new package called
bitbots test has been created during this thesis which addresses the shortcomings
mentioned above and offers a unified and pleasant developer experience. Its source
code is available in the GitHub repository bit-bots/bitbots tools4 in the directory
bitbots test5. It is important to note that bitbots test does not aim to replace any
of the chosen tools but instead extends them so that tests can be written in a more
reusable and developer-friendly manner.

The features of bitbots test are described in the following sections.

5.2.1 Test Auto Discovery

When directly using rostest and GoogleTest, a test author needs to separately
register all the tests they have written in a package’s build script, whereas nosetest
already supports test discovery when given a directory in which multiple tests can
be defined. The behavior of nosetest has been taken as an inspiration to implement

4https://github.com/bit-bots/bitbots_tools
5https://github.com/bit-bots/bitbots_tools/tree/master/bitbots_test

20

https://github.com/bit-bots/bitbots_tools
https://github.com/bit-bots/bitbots_tools/tree/master/bitbots_test

a similar behavior for the other test types in bitbots test. The result is that a test
author only needs to enable testing of their package in a general manner using the
cmake function enable_bitbots_tests()6 provided by bitbots test.

This cmake function accepts the directories in which tests are searched as argu-
ments but also defines sensible defaults for them. It then automatically registers
python unit tests using nosetests builtin discovery mechanism. Additionally, it
searches the given directories for C++ unit tests and system tests and registers
them with the corresponding test framework. For C++ unit tests, it is often nec-
essary to compile the tests together with the package’s C++ source code. This is
supported by enable_bitbots_tests() by using a cmake function argument.

Enabling tests for a package is then as simple as calling enable_bitbots_tests()

in the package’s cmake build script which is shown in fig. 5.2.

if (CATKIN_ENABLE_TESTING)

find_package(catkin REQUIRED COMPONENTS bitbots_test)

enable_bitbots_tests()

endif()

Figure 5.2: An example cmake build script that uses enable_bitbots_test() to
set up testing for the current package.

5.2.2 General Test Authoring Utilities

While test auto-discovery is a nice feature, it is still not a useful addition for au-
thoring tests. For that problem bitbots test also offers some utilities and functions
which were found to be commonly required but missing in the existing frameworks.

Notably, the most important addition is the ability to restrict test execution via
dynamically evaluated conditions. This is a necessary feature for the team because
it allows different kinds of tests to be run in different scenarios. For example, a test
that verifies that a hardware interface is working correctly should only be executed
when the hardware is connected.

Another important feature is the introduction of tags for test cases. This enables
test cases to have one more tags associated with them. A user can then specify
which subset of tests they want to execute by specifying a list of requested test
tags or a list of forbidden test tags. The former restricts test execution to tests

6https://github.com/bit-bots/bitbots_tools/blob/master/bitbots_test/cmake/

enable_bitbots_tests.cmake.in

21

https://github.com/bit-bots/bitbots_tools/blob/master/bitbots_test/cmake/enable_bitbots_tests.cmake.in
https://github.com/bit-bots/bitbots_tools/blob/master/bitbots_test/cmake/enable_bitbots_tests.cmake.in

which have one of the tags associated with them whereas the latter forbids their
execution.

Another important addition is support for writing tests that do not immediately
have a result available that can be validated. This is important when computation
happens in a multi-threaded environment but also when writing system tests.

5.2.3 Rostest Utilities

Arguably the most essential parts of bitbots test are its additional assertions and
utilities for writing system tests using rostest. These include the following:

� Assertions for verifying the log. These can be used in different contexts for
example that a certain node does not log anything on the log levels Warning,
Error or Fatal or that a message matching a RegEx pattern is logged.

� Assertions for verifying another node’s state. For example, it is possible to
assert that it is running and responding to pings.

� Assertions that verify published messages on specific topics. An example
usage would be asserting that a specific message is published in response to
one sent by the test.

Some of these assertions need to be set up and torn down during the test life-cycle.
To make the management of this more manageable, an additional TestCase sub-
class, RosNodeTestCase, has been created, which manages the setup and teardown
of these assertions as well as the test’s ROS node automatically.

5.2.4 Team-Specific Utilities

In addition to general rostest utilities, some team-specific ones were also imple-
mented. They were added to ease interacting with the team’s simulator setup and
include assertions and utilities to set up the robot in the simulator and verify the
state of the simulation. For example, using the implemented utilities, it is possible
to spawn a robot in a specific position in the simulator and then later verify that
it has moved a significant distance without falling down after sending a command
to move forward.

22

6 Evaluation

In chapter 5, a build automation system was set up to automatically build and
test merge requests created on the team’s GitHub repositories. Additionally, a
testing framework was developed to ease the creation of new tests. Of course,
these solutions need to be evaluated in order to determine their usefulness to
the team. This evaluation is done in two steps. First, a qualitative evaluation
was performed, which is described in section 6.1, and afterwards, a quantitative
evaluation is described in section 6.2.

In addition to these two evaluations, bitbots test has been used during the devel-
opment of bitbots test to author tests asserting its own correct behavior.

6.1 Qualitative Evaluation

The qualitative evaluation aimed at collecting as much feedback from the team
about the developed solution. First, an explanation about the method with which
this feedback was collected is given, with the results described afterwards.

Method

For gathering as much substantial feedback as possible, a testing event was orga-
nized, that the team was asked to attend. At this event, a detailed introduction
to writing tests was given by me, and extensive documentation was also provided.
The team members were then asked to implement tests of their own choice and on
their own accord. The event was also accompanied by a survey which the team
members were asked to fill out individually. The survey consisted of three parts,
of which the first two were filled out ahead of implementing tests and the third
one afterwards.

The first section of the survey was designed to gauge a team member’s responsi-
bility and amount of experience with the team’s software as a whole. Immediately
following was the second section, which aimed to discover how the team members
currently perform different testing-related tasks, how difficult they found these

23

tasks, and how much confidence they have in the correctness of the team’s soft-
ware. The third section was only filled out after a team member had taken part
in the event and implemented their own tests. It asked each participant how they
plan to perform the same workflows as asked in section two in the future. It also
asked the participants how difficult and effortful they found working with the pro-
posed system. Additionally, it asked each participant to make a prediction about
the team’s future software quality.

Results

Unfortunately, only a few team members attended the event and filled out the
survey completely. Because of this, no statistical analysis has been performed
to discover statistically significant results. However, some feedback could still be
extracted from the survey.

On the positive side, all participants said they think that, in general, testing will be
easier in the future and that software quality will improve. When asked how they
would perform testing in the future, participants freely chose to use bitbots test
as a framework in which to author their tests. On the downside, however, two
shortcomings were still uncovered. The first one is that components exist in the
team’s software that are not completely deterministic and are thus difficult to test
in a reproducible way. Another important issue is that due to many components
(e.g. catkin, rostest and bitbots test) interacting with each other it is often difficult
to debug not the system under tests but the tests themselves.

These two downsides are especially detrimental when considering that a good
developer experience is important when authoring tests.

6.2 Quantitative Evaluation

For the quantitative evaluation, the tests created during the testing events, as well
as additional tests authored later, were used to analyze past commits of the team’s
software. The goal is to illustrate how many errors found by a human could have
also been found using automated testing.

Method

This evaluation was done by performing the following steps:

1. For each package that has at least one automated test written using bit-
bots test :

24

a) For each of the commits in the packages git history that include the
word “fix”:

i. Checkout the found commits parent commit so that the fix is not
yet applied.

ii. Run all tests but in their newest version.

iii. Checkout the found commit so that the fix is applied.

iv. Run all tests again in their newest version.

v. Categorize the fixing commit using the following rules:

� If a test fails without the fix applied and passes with the fix
applied mark as fail2pass.

� If a test passes without the fix applied and fails with the fix
applied mark as pass2fail.

� If all tests pass regardless of whether the fix is applied mark as
not_covered.

� If a test fails without the fix applied but still fails with the fix
applied investigate further to differentiate between tests that
are not applicable to the checked out software state (mark as
unrelated_error) and the fix not correctly fixing the problem
(mark as broken_fix).

Applying these rules results in a data set in which each package has commits
associated with one or more marks. Using the described strategy also includes
merge commits which resulted from bug fixing merge requests because the team
has an internal policy to prefix all bugfix branches with “fix/” which is then
included in the merge commit message.

Results

In this evaluation, 384 commits from seven different packages were found to contain
the word “fix” and classified according to the defined criteria. In comparison the
team actively maintains 55 packages with commits dating back to 2018. This
was done using a combined number of 55 tests throughout the seven packages;
however, 40 of these are tests for the new bitbots test package. Of these 55 tests
only bitbots test contained unit tests whereas all other packages contained just
system tests. This results in the unit tests additions and utilities for C++ and
Python not being evaluated well outside of the tests contained in bitbots test. The
combined number of commits for each classification mark can be seen in fig. 6.1.
Notably the bitbots test package had the highest number of tests and no broken
fixes or pass2fail marks.

25

fail2pass pass2fail not_covered broken_fix unrelated_error
0

50

100

150

200

250

300

350

9 (2.3%) 3 (0.8%)

113 (29.4%)

3 (0.8%)

256 (66.7%)

Figure 6.1: The number of commits for each mark.

Immediately obvious is the large number of commits being marked as having an
unrelated error. This was mostly due to a major change in the team’s build config-
uration, which impacted the evaluation results because test registration happens
in the same file as the build configuration, and the evaluation script was not able
to merge the old and new versions of that file.

Another important result is the large number of commits classified as not_covered.
This was caused by only a relatively small number of tests existing, with most of
them being very high-level system tests. For example, the team’s decision-making
package only has tests asserting that all ROS nodes of that package start correctly
and no syntax errors appear in configuration files. Especially in the example
of this decision-making package, there are various commits fixing the algorithms
semantics, which of course were not covered by the simple test.

On the other hand, a combined number of 15 commits were identified in which
execution of the tests would have produced valuable information like proving or
disproving that a “fix” actually works. Six of these even were commits that had
already been manually reviewed but still broke something.

26

Threats to validity

Primarily reservations concerning the construct validity of this evaluation exist.
One such concern is that the team neither has an internal policy that enforces
bug fixing commits to have “fix” in the commit message nor a policy that enforces
that only bug fixing commits may have “fix” in the commit message. This fact
may result in not all bug fixing commits being analyzed. On the other hand,
commits might have been analyzed, which might not have been fixing any bugs
which would count towards the not_covered mark. Another concern is the in-
ability of the evaluation script to execute new tests with the old source code state
while maintaining the old build configuration. As explained, this results in large
numbers of unrelated errors. Another restriction of the evaluation method is that
old software states might require old versions of dependencies. However, in the
team’s package definitions, no dependency versions are explicitly specified, so the
evaluation script may not have been able to provide correct versions to the system
under test. This might have resulted in even more unrelated errors.

27

7 Discussion

In the following chapter, the evaluation results from chapter 6 are discussed. In
section 7.1 a conclusion of this thesis is given while possible future work is sug-
gested in section 7.2.

The results show that, in general, the team liked to use the developed solution and
team members wanted to use it in the future out of their own accord. Based on
this, it can be expected that more tests will be developed in the future, which thus
further increases the stability and testability of the team’s software. This result
also highlights that the importance of good developer experience was adequately
considered since the team gave positive feedback about their experiences when
writing tests. Configuration and test execution also works through the catkin
interface and, in doing so, successfully integrates into existing tools and workflows,
which makes test execution and management seamless and easy. On the other
hand, the participants only ever did write system tests, so nothing can be said
about the developer experience when writing unit tests. This was also reflected
in the relatively low number of faulty commits discovered during the quantitative
analysis. Nonetheless, the system did discover a number of faulty commits which
existed even though the team already uses an extensive review process. This shows
how the developed test methodology is already able to provide valuable information
to the team with minimal test authoring effort.

7.1 Conclusion

In this thesis, a testing methodology has been developed for the RoboCup team
Hamburg Bit-Bots by researching and evaluating proven methods and solutions
created in the software development industry and research. According to this re-
search, a methodology was developed for the team’s testing requirements. This
methodology consists of the usage of the existing libraries and frameworks ros-
test, nosetets and GoogleTest which were generally found to be functional but
also did not alone form a complete solution. Consequently, an additional package,
bitbots test has been developed that complements and abstracts those libraries to
form a consistent framework in which the team can author its tests. This package

28

has then be evaluated qualitatively and quantitatively. The results were gener-
ally found to fulfill all requirements, but some shortcomings were still observed.
Additionally, the effectiveness of writing tests using bitbots test should further be
evaluated over a more extended time period and with a wider variety of imple-
mented tests.

7.2 Future Work

In the future, more work could be done on the topic of testing the team’s robotics
software. Firstly, the team wishes also to test hardware control algorithms which
require the corresponding tests to only execute when said hardware is connected.
This use case could not be tested during this thesis because of the COVID-19
pandemic, but it should be done at a later date.

Also, the selected Python unit testing framework, nosetest, has discontinued its
development. This is not yet a problem but might become one in the future, so
an alternative should be evaluated.

Furthermore, the Jenkins abstraction library, bitbots jenkins library is currently
rather specific to the team’s setup in that it assumes certain hardware configu-
rations. This should be improved in the future so that others can reuse it more
easily. Similarly parts of bitbots test should also be made more reusable by imple-
menting non team-specific utilities and assertions directly in rostest. Since rostest
is an open source project, an effort to do so will be made.

A more extensive evaluation could also be performed when more tests are written.
It could be combined with monitoring the team’s software development and the
impact which the developed framework has on it.

Furthermore, linting is another method that aims to verify software correctness but
by statically analyzing source code and then evaluating it according to a predefined
static set of rules. However, it integrates into a development workflow similarly to
testing. Its effectiveness could be analyzed in a similar manner in which testing
was analyzed during this thesis.

29

Bibliography

Literature

[90] IEEE Standard Glossary of Software Engineering Terminology. Sept. 28,
1990. doi: 10.1109/ieeestd.1990.101064.

[Boy00] Kenneth W. Boyer. “Test Process Improvement: A practical step-by-
step guide to structured testing”. In: ACM SIGSOFT Software Engi-
neering Notes 25.3 (May 2000), pp. 59–60. doi: 10.1145/505863.
505883.

[Ron01] Dana Ron.“Property testing”. In: COMBINATORIAL OPTIMIZATION-
DORDRECHT- 9.2 (2001), pp. 597–643.

[Run06] P. Runeson. “A survey of unit testing practices”. In: IEEE Software
23.4 (July 2006), pp. 22–29. doi: 10.1109/ms.2006.91.

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating Sys-
tem”. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe,
Japan. 2009, p. 5.

[Kha10] Mohd Ehmer Khan. “Different forms of software testing techniques for
finding errors”. In: International Journal of Computer Science Issues
(IJCSI) 7.3 (2010), p. 24.

[CH11] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for
random testing of Haskell programs”. In: Acm sigplan notices 46.4
(2011), pp. 53–64. doi: 10.1145/1988042.1988046.

[SBC12] Abhijit A Sawant, Pranit H Bari, and PM Chawan. “Software testing
techniques and strategies”. In: International Journal of Engineering
Research and Applications (IJERA) 2.3 (2012), pp. 980–986.

[DF14] Ermira Daka and Gordon Fraser. “A Survey on Unit Testing Practices
and Problems”. In: (Nov. 2014). doi: 10.1109/issre.2014.11.

[Pai+15] Ali Paikan et al. “A Generic Testing Framework for Test Driven De-
velopment of Robotic Systems”. In: Modelling and Simulation for Au-
tonomous Systems. Springer International Publishing, 2015, pp. 216–
225. doi: 10.1007/978-3-319-22383-4_17.

30

https://doi.org/10.1109/ieeestd.1990.101064
https://doi.org/10.1145/505863.505883
https://doi.org/10.1145/505863.505883
https://doi.org/10.1109/ms.2006.91
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1109/issre.2014.11
https://doi.org/10.1007/978-3-319-22383-4_17

[Hil+16] Michael Hilton et al. “Usage, costs, and benefits of continuous integra-
tion in open-source projects”. In: 2016 31st IEEEACM International
Conference on Automated Software Engineering (ASE). IEEE. 2016,
pp. 426–437.

[Bes17] Marc Bestmann. Towards Using ROS in the RoboCup Humanoid Soc-
cer League. 2017.

[Afz18] Afsoon Afzal.“Quality assurance automation in autonomous systems”.
In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018. ACM Press, 2018. doi:
10.1145/3236024.3275429. url: https://www.researchgate.

net/publication/328587601_Quality_assurance_automation_

in_autonomous_systems.

[Tim+18] Christopher Steven Timperley et al. “Crashing simulated planes is
cheap: Can simulation detect robotics bugs early?” In: 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST). IEEE. 2018, pp. 331–342. doi: 10.1109/ICST.
2018.00040.

[Afz+20a] Afsoon Afzal et al. “A Study on Challenges of Testing Robotic Sys-
tems”. In: 2020 IEEE 13th International Conference on Software Test-
ing, Validation and Verification (ICST). IEEE, Oct. 2020. doi: 10.
1109/icst46399.2020.00020.

[Afz+20b] Afsoon Afzal et al. “A Study on the Challenges of Using Robotics
Simulators for Testing”. In: arXiv preprint arXiv:2004.07368 (2020).
url: https://www.researchgate.net/publication/340683351_A_
Study_on_the_Challenges_of_Using_Robotics_Simulators_for_

Testing.

Online Resources

[1] Martin Fowler. Continuous Integration. May 1, 2006. url: https://martinfowler.
com/articles/continuousIntegration.html#AutomateTheBuild (vis-
ited on 05/19/2021).

[2] About status checks - GitHub Docs. url: https://docs.github.com/

en/github/collaborating-with-pull-requests/collaborating-on-

repositories-with-code-quality-features/about-status-checks

(visited on 06/16/2021).

[3] Agola. url: https://agola.io/ (visited on 06/16/2021).

31

https://doi.org/10.1145/3236024.3275429
https://www.researchgate.net/publication/328587601_Quality_assurance_automation_in_autonomous_systems
https://www.researchgate.net/publication/328587601_Quality_assurance_automation_in_autonomous_systems
https://www.researchgate.net/publication/328587601_Quality_assurance_automation_in_autonomous_systems
https://doi.org/10.1109/ICST.2018.00040
https://doi.org/10.1109/ICST.2018.00040
https://doi.org/10.1109/icst46399.2020.00020
https://doi.org/10.1109/icst46399.2020.00020
https://www.researchgate.net/publication/340683351_A_Study_on_the_Challenges_of_Using_Robotics_Simulators_for_Testing
https://www.researchgate.net/publication/340683351_A_Study_on_the_Challenges_of_Using_Robotics_Simulators_for_Testing
https://www.researchgate.net/publication/340683351_A_Study_on_the_Challenges_of_Using_Robotics_Simulators_for_Testing
https://martinfowler.com/articles/continuousIntegration.html#AutomateTheBuild
https://martinfowler.com/articles/continuousIntegration.html#AutomateTheBuild
https://docs.github.com/en/github/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks
https://docs.github.com/en/github/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks
https://docs.github.com/en/github/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks
https://agola.io/

[4] AWS CodeBuild – Fully Managed Build Service. url: https : / / aws .

amazon.com/codebuild/ (visited on 06/16/2021).

[5] Azure Pipelines | Microsoft Azure. url: https://azure.microsoft.com/
en-us/services/devops/pipelines/ (visited on 06/17/2021).

[6] Bamboo Continuous Integration and Deployment Build Server. url: https:
//www.atlassian.com/software/bamboo (visited on 06/16/2021).

[7] Buddy: The DevOps Automation Platform. url: https://buddy.works/
(visited on 06/17/2021).

[8] Buildbot. url: https://buildbot.net/ (visited on 06/17/2021).

[9] Catkin Command Line Tools — catkin tools 0.0.0 documentation. url:
https://catkin-tools.readthedocs.io/en/latest/ (visited on 06/16/2021).

[10] Cloud Build Serverless CI/CD Platform | Google Cloud. url: https://
cloud.google.com/build (visited on 06/17/2021).

[11] CloudBees CodeShip. url: https://docs.cloudbees.com/docs/cloudbees-
codeship/latest/ (visited on 06/17/2021).

[12] CMake. url: https://cmake.org/ (visited on 06/16/2021).

[13] Concourse CI. url: https://concourse-ci.org/ (visited on 06/17/2021).

[14] Continuous Integration & Delivery - Semaphore. url: https://semaphoreci.
com/ (visited on 06/17/2021).

[15] Continuous Integration and Delivery - CircleCI. url: https://circleci.
com/ (visited on 06/17/2021).

[16] Drone CI – Automate Software Testing and Delivery. url: https://www.
drone.io/ (visited on 06/17/2021).

[17] Empowering App Development for Developers | Docker. url: https://

www.docker.com (visited on 06/23/2021).

[18] Extending with Shared Libraries. Jenkins documentation. url: https://
www.jenkins.io/doc/book/pipeline/shared-libraries/ (visited on
06/24/2021).

[19] Features � GitHub Actions. url: https://github.com/features/actions
(visited on 06/16/2021).

[20] GitLab CI/CD | GitLab. url: https://docs.gitlab.com/ce/ci/ (visited
on 06/17/2021).

[21] GoogleTest User’s Guide | GoogleTest. url: https://google.github.io/
googletest/ (visited on 06/23/2021).

32

https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
https://buddy.works/
https://buildbot.net/
https://catkin-tools.readthedocs.io/en/latest/
https://cloud.google.com/build
https://cloud.google.com/build
https://docs.cloudbees.com/docs/cloudbees-codeship/latest/
https://docs.cloudbees.com/docs/cloudbees-codeship/latest/
https://cmake.org/
https://concourse-ci.org/
https://semaphoreci.com/
https://semaphoreci.com/
https://circleci.com/
https://circleci.com/
https://www.drone.io/
https://www.drone.io/
https://www.docker.com
https://www.docker.com
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://github.com/features/actions
https://docs.gitlab.com/ce/ci/
https://google.github.io/googletest/
https://google.github.io/googletest/

[22] Intel® Neural Compute Stick 2. url: https://software.intel.com/
content/www/us/en/develop/hardware/neural-compute-stick.html

(visited on 06/29/2021).

[23] Java Software | Oracle. url: https://www.oracle.com/java/ (visited on
06/16/2021).

[24] Jenkins. url: https://www.jenkins.io/ (visited on 06/16/2021).

[25] Licenses & Standards | Open Source Initiative. url: https://opensource.
org/licenses (visited on 06/29/2021).

[26] nosetests — nose 1.3.7 documentation. url: https://nose.readthedocs.
io/en/latest/man.html (visited on 06/23/2021).

[27] Open Robotics. url: https://www.openrobotics.org/ (visited on 06/16/2021).

[28] Open Source Continuous Delivery and Release Automation Server | GoCD.
url: https://www.gocd.org/ (visited on 06/17/2021).

[29] pytest: helps you write better programs — pytest documentation. url: https:
//docs.pytest.org/en/latest/ (visited on 06/16/2021).

[30] quickcheck - crates.io: Rust Package Registry. url: https://crates.io/
crates/quickcheck (visited on 06/16/2021).

[31] rostest - ROS Wiki. url: https://wiki.ros.org/rostest/ (visited on
06/23/2021).

[32] Rust Programming Language. url: https://www.rust-lang.org/ (visited
on 06/16/2021).

[33] TeamCity: the Hassle-Free CI and CD Server by JetBrains. url: https:
//www.jetbrains.com/teamcity/ (visited on 06/17/2021).

[34] The Go Programming Language. url: https://golang.org/ (visited on
06/16/2021).

[35] Travis CI - Test and Deploy with Confidence. url: https://www.travis-
ci.com/ (visited on 06/17/2021).

[36] unittest — Unit testing framework — Python 3.9.5 documentation. url:
https : / / docs . python . org / 3 / library / unittest . html (visited on
06/16/2021).

[37] Welcome to Hypothesis! — Hypothesis 6.14.0 documentation. url: https:
//hypothesis.readthedocs.io/en/latest/index.html (visited on
06/16/2021).

[38] Welcome to nose2 — nose2 0.6.0 documentation. url: https://docs.

nose2.io/en/latest/ (visited on 06/16/2021).

33

https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://www.oracle.com/java/
https://www.jenkins.io/
https://opensource.org/licenses
https://opensource.org/licenses
https://nose.readthedocs.io/en/latest/man.html
https://nose.readthedocs.io/en/latest/man.html
https://www.openrobotics.org/
https://www.gocd.org/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://crates.io/crates/quickcheck
https://crates.io/crates/quickcheck
https://wiki.ros.org/rostest/
https://www.rust-lang.org/
https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/
https://golang.org/
https://www.travis-ci.com/
https://www.travis-ci.com/
https://docs.python.org/3/library/unittest.html
https://hypothesis.readthedocs.io/en/latest/index.html
https://hypothesis.readthedocs.io/en/latest/index.html
https://docs.nose2.io/en/latest/
https://docs.nose2.io/en/latest/

[39] Welcome to Python.org. url: https : / / www . python . org/ (visited on
06/16/2021).

[40] Xunit: output test results in xunit format — nose 1.3.7 documentation.
url: https://nose.readthedocs.io/en/latest/plugins/xunit.html
(visited on 06/23/2021).

34

https://www.python.org/
https://nose.readthedocs.io/en/latest/plugins/xunit.html

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne fremde Hilfe angefertigt und mich anderer als der im beigefügten Verze-
ichnis angegebenen Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder
sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich
gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem an-
deren Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung
der auf dem elektronischen Speichermedium entspricht.

Hamburg, den :

Einstellung in die Bibliothek der Informatik

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Infor-
matik zu.

Hamburg, den :

i

	Introduction
	Fundamentals
	Different Kinds of Tests
	Standard Solutions for Writing Tests
	ROS – Robot Operating System
	Build Automation
	Containers

	Related Work
	Tool Analysis
	Build Automation platform
	Requirement definition
	Beneficial Aspects
	Fulfillment Analysis

	Testing frameworks
	Python Unit Tests
	C++ Unit Tests
	System Tests

	Implementation
	Build Automation Platform
	Jenkins Configuration
	Pipeline Abstraction

	Testing Framework bitbots_test
	Test Auto Discovery
	General Test Authoring Utilities
	Rostest Utilities
	Team-Specific Utilities

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion
	Conclusion
	Future Work

